
Concept Evolution Detecting over Feature Streams

PENGZHOU, YUFENGGUO, HAORAN YU, YUANTING YAN, and YANPING ZHANG, Key
Laboratory of Intelligent Computing and Signal Processing (Anhui University), Ministry of Education, School
of Computer Science and Technology, Anhui University, China
XINDONGWU, Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology),
Ministry of Education, Hefei University of Technology, China

The explosion of data volume has gradually transformed big data processing from the static batch mode to the
online streaming model. Streaming data can be divided into instance streams (feature space remains fixed
while instances increase over time), feature streams (instance space is fixed while features arrive over time), or
both. Generally, online streaming data learning has two main challenges: infinite length and concept changing.
Recently, feature stream learning has received much attention. However, existing feature stream learning
methods focus on feature selection or classification but ignore the concept changing over time. To the best of
our knowledge, this is the first work that studies concept evolution detection over feature streams. Specifically,
we first give the formal definition of concept evolution over feature streams, which include three different
types: concept emerging, concept drift, and concept forgetting. Then, we design a novel framework to detect
the concept evolution over feature streams that consists of a sliding window, an improved density peak-based
clustering algorithm, and a weighted bipartite graph-based concept detecting method. Extensive experiments
have been conducted on several synthetic and high-dimensional datasets to indicate our new method’s ability
to cluster and detect concept evolution over feature streams.

CCS Concepts: • Computing methodologies → Online learning settings.

Additional Key Words and Phrases: Online Learning, Feature Streams, Stream Learning, Concept Evolution
Detecting

ACM Reference Format:
Peng Zhou, Yufeng Guo, Haoran Yu, Yuanting Yan, Yanping Zhang, and Xindong Wu. 2020. Concept Evolution
Detecting over Feature Streams. 1, 1 (July 2020), 32 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Big data involves large, complex, and growing datasets with multiple independent sources [3, 46]. In
many applications, the knowledge extraction process must be very efficient and near real-time since
storing all the observed data is almost infeasible [53]. The unprecedented amount of data requires
practical data analysis and prediction platforms for fast response and real-time classification of
big data. Besides, technological developments have led to the emergence of data streams and have
changed how people store, communicate, and process data [21] .

Corresponding Author: Yuanting Yan.
Authors’ addresses: Peng Zhou, doodzhou@ahu.edu.cn; Yufeng Guo, zghnay333@gmail.com; Haoran Yu, E22301154@
stu.ahu.edu.cn; Yuanting Yan, ytyan@ahu.edu.cn; Yanping Zhang, zhangyp2@gmail.com, Key Laboratory of Intelligent
Computing and Signal Processing (Anhui University), Ministry of Education, School of Computer Science and Technology,
Anhui University, Heifei, Anhui, China, 230601; Xindong Wu, Key Laboratory of Knowledge Engineering with Big Data
(Hefei University of Technology), Ministry of Education, Hefei University of Technology, China, xwu@hfut.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2020/7-ART $15.00
https://doi.org/10.1145/1122445.1122456

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2 Peng Zhou et al.

Generally speaking, static data do not change over a long period, while stream data are constantly
updated and changed over time [42]. Furthermore, stream data can be further divided into instance
streams (known in many pieces of literature as “data stream"), feature streams, or both [24]. For
instance streams, the feature space of the target dataset is fixed, while the number of instances
in the time domain keeps increasing due to the constant arrival of new data [2]. On the contrary,
for feature streams, the instance space is fixed while features are generated and arrived one by
one over time [18]. For example, Facebook, Twitter, and LinkedIn have millions of active users,
and such networks generate significant streams of online data, such as text, multimedia, links, and
interactions [35]. Take Twitter as an example, it produces more than 500 million tweets daily, and
many slang words (features) are continuously being generated [40]. Specifically, when presenting a
new hot topic, a set of new keywords appears, leading to an increase in the dimensionality of the
data over time [24].

In general, streaming data mining has two main challenges: infinite length and concept changing
[21]. Due to the large or potentially infinite amount of data arriving in the stream, only a portion
of the entire data can be processed. Therefore, for instance streams, we use the time window
as a common technique for the infinite length challenge [35]. Meanwhile, the rapidly changing
environment of new instances inevitably results in the appearance of the concept drift problem,
which means that the statistical properties of the target variable change over time in unforeseen
ways [12]. Concept drift describes unforeseeable changes in the underlying distribution of streaming
data over time, such as new products, new markets, new customers, and so on [28, 32, 50]. Besides,
another issue of concept changing, which refers to the emergence of new classes during the
evolution of instance streams, has been studied [31]. Traditional new class detection techniques
work by assuming or constructing normal data models and identifying data points as new concepts
that deviate from “normal" points [39]. Some efficient methods have recently been proposed to
handle both concept drift and concept emerging over instance stream data [14, 34].
Feature steam is defined as features that are generated and arrived one by one over time while

the number of instances remains fixed [52]. Most existing feature stream learning methods focus
on feature selection [18], or online classification [16, 17, 57]. However, besides potentially infinite
volume, feature stream mining also has the inherent property of dynamic concept change. For
example, in the areas of new disease detection, such as COVID-19, we first diagnosed it as a
common cold. As patients continue to add new medical tests (feature streams) to their repertoire,
our understanding of the disease has changed (concept evolution). Fig.1 indicates an example of
feature streams in a practical production line. Specifically, from the beginning of entering the
assembly line to the end of completion, a specific product 𝑃𝑖 generally needs to go through multiple
processing equipments (from device 1 to device𝑚). Different devices generate different streaming
features for the same product 𝑃𝑖 over time. Suppose there are three levels of product quality (A:
Excellent, B: Qualified, and C: Failed). During the processing of the product 𝑃𝑖 , with different
devices (generate different streaming features), the “concept" of the quality of a specific product 𝑃𝑖
may change over time. In other words, the quality of a specific product 𝑃𝑖 may change from “B”
to “C” with the arrival of some new streaming features. Therefore, the concepts can change over
feature streams. With the detection of concept evolution, we can identify the processing equipment
(the timestamp of streaming features) that caused this change, then rectify it to improve product
quality.
The significance of this research lies in the proposition of a new framework for detecting

concept evolution in feature streams, offering a new perspective for streaming data in dynamic
environments. Specifically, by monitoring changes in concepts in feature streams, patterns evolving
within the data can be identified in a timely or near-real-time manner, enabling adjustments to
systems to adapt to new circumstances or enhance performance. This is crucial for fields such as

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 3

production line optimization and disease monitoring. For instance, monitoring feature streams of
specific products in production lines can promptly detect quality variations during the production
process and swiftly adjust equipment to improve product quality [10]. In the medical field, concept
evolution detection in feature streams can assist doctors in diagnosing diseases more accurately,
adjusting treatment plans promptly, and enhancing patient treatment outcomes and survival rates
[4]. Therefore, this study expands the theoretical realm of feature stream data mining and holds
broad practical application prospects.

Fig. 1. Different devices (from 1 to𝑚) generate different stream features for the same product 𝑖 over time in
a production line. Suppose there are three levels of product quality (A:Excellent, B:Qualified, and C:Failed).
During the processing of the product, with different streaming features, the “concept" of the quality of a
specific product may change over time (e.g., from “Qualified” to “Failed”).

In general, we divide the concept evolution over feature streams into three categories: concept
emerging, concept drift, and concept forgetting, as shown in Fig. 2.With the arrival of new streaming
features, the concepts between different time windows (feature spaces) may change over time.
Concept emerging refers to the appearance of novel classes while feature streams evolve. As shown
in Fig. 2(a), a new concept emerged between different timestamps over the feature streams. Concept
drift indicates the gradual change in the distribution of concepts, as shown in Fig. 2(b). Besides,
Fig. 2(c) explains concept forgetting in feature streams, which means the existing concepts that
have disappeared in recent streams. Data analysis has revealed that data mining and machine
learning in a concept-changing environment will result in poor learning results if the change is not
addressed [28]. Detecting concept drift and concept forgetting helps us to analyze the causes of
model performance degradation or failure. The task of detecting emerging concepts will positively
consider “new concepts" as learning resources for future use. For example, a new virus detector
can detect new concepts used by the medical community for research. In sum, it is critical to detect
concept evolution in feature stream mining. However, to the best of our knowledge, this is the first
work focusing on concept evolution detecting over feature streams.

For real-world applications, obtaining labels for streaming data in a timely manner is almost
impossible, andmost of the streaming data is unlabeled. Therefore, we apply clustering algorithms to
discover the possible clusters. We assume different clusters indicate different concepts. Meanwhile,
for streaming data, we cannot know the number of clusters before learning, and the clusters’ shape
may be arbitrary. Thus, we need a clustering algorithm that detects non-spherical clusters without
specifying the number of clusters. The density peak clustering (DPC) algorithm clusters the data
set by building a decision graph and finding the cluster centers in the decision graph [45]. Without
specifying the number of clusters, DPC can detect non-spherical clusters with no iterative process.
Besides, the authors highlight the advantage of DPC in requiring fewer parameters compared
to DBSCAN [9, 45]. They demonstrate that DPC can achieve effective clustering with just one

, Vol. 1, No. 1, Article . Publication date: July 2020.

4 Peng Zhou et al.

Fig. 2. There are three types of concept evolution in the feature streams: concept emerging, concept drift,
and concept forgetting. Specifically, (a) represents an emerging new concept (with red color) with the arrival
of new feature streams, whereas the concepts with gray color indicate no concept changing. (b) indicates the
concept drift (the gradual change in the distribution of concepts) for two concepts under different feature
spaces with green colors. (c) explains concept forgetting in feature streams, i.e., concept (with yellow color)
that has disappeared in current feature streams.

parameter: the cutoff distance 𝑑𝑐 . In contrast, DBSCAN typically requires at least two parameters:
the neighborhood radius 𝜀 and the minimum number of points required to form a dense region
𝑀𝑖𝑛𝑃𝑡𝑠 . This reduced parameter dependency makes DPC simpler and less sensitive to parameter
tuning, offering practical advantages in real-world applications. However, DPC performs poorly and
may generate the wrong number of clusters on high-dimensional datasets. Therefore, we introduce
kernel principal component analysis into the DPC algorithm to solve the curse of dimensionality.
In addition, the local density in the DPC algorithm is defined by the parameter cutoff distance, and
the improper selection of the cutoff distance will lead to the wrong selection of cluster centers.
To avoid the possible detrimental effects of cutoff distances and to distinguish the density peaks
of all data points, we consider the influence of one point on the other points and calculate the
local density of each point using reverse k-nearest neighbors. Based on these, we propose a new,
improved DPC-based clustering algorithm for concept evolution detection that does not need to
specify the number of clusters and can distinguish the density peaks of all data points.

In this paper, we propose a new Concept Evolution Detecting framework over Feature Streams,
named CED-FS, that consist of a sliding window, an improved DPC-based clustering algorithm, and
a weighted bipartite graph-based concept evolution detection mechanism. Specifically, we use a
sliding window mechanism to cache the latest streaming features as data retrieval. Then, we apply
an improved DPC-based clustering algorithm on the two adjacent feature windows. After that,
we detect concept evolution by measuring the similarity between each cluster of the clustering
results. We model the two adjacent cluster sets together as a weighted bipartite graph. Then we
calculate the weights between each pair of clusters in the adjacent clustering sets to construct a
weight matrix. We summarize the characteristics of concept emerging, concept drift, and concept
forgetting in the weight matrix. Finally, we let the maximum value of each row or column in the
weight matrix be compared with a given threshold to determine the types of concept evolution.
The main contributions are as follows:

• To the best of our knowledge, this is the first work that studies the issue of concept evolution
detecting in feature stream learning. We formally define three different types of concept
evolution over feature streams: concept emerging, concept drift, and concept forgetting. We
present a case study to illustrate concept evolution’s existence over feature streams.

• We design a novel framework to detect the concept evolution over feature streams that
consist of a sliding window, a clustering algorithm, and a concept-detecting mechanism. We

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 5

propose a new, improved DPC-based clustering algorithm, KDPC-RkNN, combining kernel
principal component analysis and reverse k-nearest neighbor. KDPC-RkNN does not need
to specify the number of clusters and can distinguish the density peaks of all data points.
Meanwhile, we measure the similarity between each cluster of two adjacent feature windows
and construct a weighted bipartite graph. Then, we can detect different types of concept
evolution with the weight matrix.

• In experiments, we first verify the clustering performance of KDPC-RkNN on synthetic and
real-world datasets with some state-of-the-art clustering algorithms. Then, we conduct exten-
sive experiments on several high-dimensional real-world datasets to validate our framework’s
ability to detect concept evolution. We experimentally indicate the ability of CED-FS to detect
concept emerging, concept drift, and concept forgetting over feature streams containing
multiple concepts.

The rest of the paper is organized as follows. Section II presents a brief introduction of the related
works. Section III gives a formal definition of the concept evolution and a case study to illustrate
the existence of concept evolution in feature streams. Section IV presents the proposed framework.
Section V gives the experimental results. Finally, the paper concludes in Section VI.

2 RELATEDWORK
2.1 Clustering for Concept Detection
Clustering algorithms aim to group objects so that the objects within the same group exhibit greater
similarity than objects in other groups. In this paper, we assume different clusters indicate different
concepts and we apply clustering to detect different concepts in the datasets.
Traditional clustering methods, such as k-means and its variants, are limited to clustering

data with spherical clusters [1, 37]. For example, K-means++ is an improvement to the K-means
clustering algorithm, primarily enhancing the selection of initial cluster centers [1]. By intelligently
choosing initial cluster centers, K-means++ reduces the number of algorithm iterations and improves
convergence speed. K-medoids is a K-means variant that defines each cluster’s center as the point
with the smallest average distance to other points in the cluster [37]. Unlike K-means, K-medoids is
insensitive to outliers because it selects actual data points instead of the mean of the data. However,
real-life data clusters often do not conform to spherical shapes. Consequently, new methods have
emerged to cluster data with arbitrary-shaped clusters, including density-based clustering [9, 56],
graph-based methods [49], exemplar-based clustering [29], and so on. For instance, DBSCAN is a
density-based clustering algorithm that discovers clusters by defining density in the data space [9].
DBSCAN classifies data points into core, boundary, and noise points. Core points have a sufficient
number of neighbors within a specified radius, boundary points have an insufficient number of
neighbors but fall within the core point’s neighborhood, while noise points are neither core nor
boundary points. CDC is a clustering algorithm that combines diversity and connectivity [38].
CDC clusters data points by considering the diversity (the extent to which a point differs from
other points within the cluster) and connectivity (similarity between points within the cluster). The
algorithm uses an objective function that includes terms for maximizing diversity and maximizing
connectivity to find diverse and connected clusters.
Density peak clustering (DPC) [45] identifies clusters by leveraging the insight that cluster

centers typically reside within dense regions and are encircled by points of lower density. Initially,
the algorithm computes the densities of all points and subsequently determines the distances to their
nearest points with higher density (𝛿). Cluster centers are designated to possess high values of both
𝛿 and density. Subsequently, the remaining points are assigned to clusters by amalgamating with
the nearest higher-density point. Two types of strategies are proposed in the literature to extend

, Vol. 1, No. 1, Article . Publication date: July 2020.

6 Peng Zhou et al.

the DPC algorithm. Firstly, the performance of DPC is significantly influenced by the threshold
parameter, i.e., local density 𝑑𝑐 , which requires fine-tuning concerning different datasets. To address
the parameter setting issue, Ding et al.[7] developed an automatic DPC algorithm based on the
generalized extreme value distribution. DPC-KNN is a density-based clustering algorithm that
combines the concepts of density peaks and K-nearest neighbors [56]. The algorithm first computes
the local density and the nearest neighbor distance for each point, then determines the clustering
result based on these two properties. Density peaks represent the core of a cluster, while the relative
nearest neighbor distance is used to distinguish distances between different clusters. Secondly,
other data points may be misallocated when the cluster centers are inaccurately chosen. To better
discern the cluster centers, Xie et al. [54] employed fuzzy-weighted K-nearest neighbors to enhance
the robustness of data point allocation. Du et al.[8] improved the clustering outcomes, especially
for high-dimensional datasets, using K-nearest neighbors and principal component analysis. DPC-
DLP incorporates a novel dynamic graph-based label propagation strategy by considering the
correlation between instances and the local structure of the data [49]. The algorithm starts by
detecting density peaks by calculating each data point’s local density and relative nearest neighbor
distance. Density peaks typically represent the core of clusters. The algorithm iteratively optimizes
the clustering result by repeatedly performing density peak detection, dynamic graph modeling,
and label propagation, updating the structure and labels of the dynamic graph until a certain
stopping condition is met.

2.2 Concept Detection over Instance Stream
The instance stream assumes the feature space of the target dataset is fixed, while the number of
instances in the time domain keeps increasing due to the constant arrival of new data [2]. Instance
stream is known in much literature as “data stream". Data stream (instance stream) learning has
been studied for many years and has produced a large number of excellent works [21, 35, 42]. There
are two main types of concept detection in instance streams, namely concept drift and concept
evolution [31].

Concept drift was first identified as the change in the data stream distribution [47]. Considerable
work has been done to detect concept drift in data streams effectively. [28] reviewed more than 130
high-quality publications in research areas related to conceptual drift, analyzed recent developments
in methods and techniques, and developed a framework for learning under conceptual drift. [14]
present a semi-supervised framework for classifying evolving data streams that detect concept
drift and determine chunk boundary dynamically by finding any significant change in classifier
confidence. [22] described and evaluated the online classification system, which dynamically adjusts
the size of the training window and the number of new examples between model reconstructions
according to the current concept drift rate. [32] automatically detected the emergence of new
classes in the presence of concept drift by quantifying cohesion between unlabeled test instances
and separating test instances from training instances. [34] proposed a flow-based active learning
strategy, which handles the sampling bias problem and queries samples that cause changes, i.e.,
drift samples or samples from new classes. [13] proposed the general framework for combining
a diverse range of meta-features into a single representation. The proposed approach enabled
state-of-the-art feature selection methods, such as mutual information, to be applied to concept
representation meta-features for the first time. [27] proposed a novel threshold selection algorithm
to align the drift thresholds of a set of algorithms so that they are all at the same sensitivity level.
Higher detection sensitivity can improve the accuracy of data streams with frequently changing
distributions. The evaluation results show that the drift threshold should not be fixed during flow
learning.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 7

Concept evolution (also named concept emerging) in data streams was defined as the emergence
of new classes [50]. Specifically, [12] used adaptive outlier detection, discrete Gini coefficients, and
multiple invisible class detection to detect invisible classes in the data stream. [50] based on the
k-means clustering algorithm, which considers the problem of detecting concepts from a one-class
classification perspective and aims to deal with novelty detection and concept drift through a single
strategy. [31] proposed an adaptive threshold for outlier detection and a probabilistic class detection
method based on the discrete Gini coefficient, which solves the problem of simultaneous emergence
of multiple new classes problem. [39] have presented a review of the current state-of-the-art in
novelty detection. It was found that a precise definition of novelty detection is difficult to achieve,
nor is it possible to suggest what an “optimal” method of novelty detection would be. [15] based
on clustering algorithms, discrete cosine transforms are used to build compact generative models,
which are then used to detect new classes and concept drift efficiently. In [36], a semi-supervised
approach was proposed to detect concept drift and concept evolution in the data stream by using
a limited number of labeled data and a dynamic sliding window. [30] proposed a data stream
classification technique that integrates a novel class detection mechanism into traditional classifiers,
enabling automatic detection of novel classes before the true labels of the novel class instances
arrive.

2.3 Online Feature Stream Learning
Feature stream is defined as features that are generated and arrived one by one over time while the
number of instances remains fixed [52]. Most of existing feature stream learning work focus on
feature selection [18] and online classification [57].
Recently, online feature selection with dynamic features has become an active research area.

Specifically, [52] proposed a new online stream feature selection (OSFS) method to select strongly
correlated and non-redundant features dynamically, and an efficient Fast-OSFS algorithm is pro-
posed to improve feature selection performance. [60] proposed a new online streaming feature
selection method based on adaptive density neighborhood relation, named OFS-Density. Besides,
there is group structure in the feature stream in some real-world applications, such as in image
analysis, where features are generated in groups to represent the color, texture, and other visual
information. Group feature selection discovers meaningful subsets of features by structural infor-
mation between features. [23] used stream features for group feature selection while performing
feature selection at the group and individual feature levels, taking full advantage of the group struc-
ture to reduce the cost of evaluating flow features. [51] proposed approach consists of two stages:
online within-group selection and online between-group selection. In within-group selection, a
spectral analysis-based criterion was devised to select discriminative features. A linear regression
model was used to select the optimal subset in between-group selection. [61] proposed a new online
scalable streaming feature selection framework from a dynamic decisionmaking perspective, which
dynamically classifies input features as selected, discarded, or delayed to minimize decision risk.
Meanwhile, some works focus on the classification of streaming features. For instance, [57]

proposed a semi-streaming approach based on the well-known emerging pattern classification
method that can be divided into two steps: online and offline. [16] explored a new online learning
problem where the input sequence lives in an over-time varying feature space, and the ground-truth
label of any input point is given only occasionally, making online learners less restrictive and more
applicable. [17] proposed a novel learning paradigm: Feature Evolvable Streaming Learning, where
old features would vanish and new features would occur that attempt to recover the vanished
features and exploit them to improve performance. Besides, [58] present a boosting framework cov-
ering gradient ascent and online gradient ascent. They revisited Stochastic Continuous Submodular
Maximization in both offline and online settings, which can benefit wide applications in machine

, Vol. 1, No. 1, Article . Publication date: July 2020.

8 Peng Zhou et al.

learning and operations research areas. [59] present two communication-efficient decentralized
online algorithms for the monotone continuous DR-submodular maximization problem, both of
which reduce the number of per-function gradient evaluations and per-round communication
complexity from 𝑇 3/2 to 1. Maximizing a monotone submodular function is a fundamental task in
data mining, machine learning, economics, and statistics.
In sum, existing online feature stream learning methods focus on the task of feature selection

and classification. Motivated by this, this paper first studies the issue of concept evolution detecting
over feature streams.

3 PROBLEM DEFINITION
In this section, we first define instance streams, feature streams, and concept evolution over feature
streams. Then, we present a case study to illustrate the existence of concept evolution over feature
streams. Table 1 summarises the notation used in this paper.

Table 1. Summary of Mathematical Notations

Notations Definition
D the dataset
𝑡 the timestamp
𝑛 total number of instances
𝑚 total number of features
𝑥𝑖 the 𝑖𝑡ℎ instance in D
𝑓𝑗 the 𝑗𝑡ℎ feature in D
𝐹 [𝑖, 𝑗] 𝐹 [𝑖, 𝑗] = {𝑓𝑖 , 𝑓𝑖+1, · · · , 𝑓𝑗 } contains all the streaming features from timestamp 𝑖 to 𝑗
𝑊[𝑖, 𝑗] 𝑊[𝑖, 𝑗] = {𝑐1, 𝑐2, · · · , 𝑐𝑘 } denotes the 𝑘 different concepts over feature stream window 𝐹 [𝑖, 𝑗]
𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗) the distance between 𝑥𝑖 and 𝑥 𝑗
𝐺 = (𝑉 , 𝐸) bipartite graph 𝐺 with vertex set 𝑉 and edge set 𝐸

3.1 Formal Definition of Concept Evolution
In a natural streaming feature environment, as the number of features in new data collected from
the temporal domain increases over time, the concept of these objects may evolve due to changes
in the feature space. Therefore, we present a formal definition of concept evolution over feature
streams that contains three types: concept emerging, concept drift, and concept forgetting.

Definition 3.1. [Instance Streams] Suppose dataset D = [𝑥1;𝑥2; ...;𝑥𝑛] ∈ 𝑅𝑛×𝑚 , where the
feature space is fixed while instances arrive one by one over time. At each timestamp 𝑡 , we can
require a new streaming instance 𝑥𝑡 ∈ 𝑅1×𝑚 , and we cannot know the exact number of 𝑛 in advance.

Definition 3.2. [Feature Streams] Suppose datasetD = [𝑓1, 𝑓2, ..., 𝑓𝑚] ∈ 𝑅𝑛×𝑚 , where the instance
space is fixed while features arrive one by one over time. At each timestamp 𝑡 , we can require a
new streaming feature 𝑓𝑡 ∈ 𝑅𝑛×1, and we cannot know the exact number of𝑚 in advance.

Definition 3.3. [Concept in Feature Streams] In a feature stream environment with a fixed
number of instances, objects belonging to the same cluster maintain roughly the same behavioral
performance. We call these objects in the same cluster as a concept in feature streams.

Definition 3.4. [Concept Evolution over Feature Streams] Suppose that in a feature stream
environment, at each timestamp 𝑡 , a new streaming feature 𝑓𝑡 is generated and arrives. The feature
stream window 𝐹 [𝑖, 𝑗] = {𝑓𝑖 , 𝑓𝑖+1, · · · , 𝑓𝑗 } contains all the streaming features from timestamp 𝑖
to 𝑗 , and𝑊[𝑖, 𝑗] = {𝑐1, 𝑐2, · · · , 𝑐𝑘 } denotes the 𝑘 different concepts over 𝐹 [𝑖, 𝑗] . For two adjacent

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 9

feature windows 𝐹𝑇 and 𝐹𝑇+1, concept evolution occurs if𝑊𝑇 ≠ 𝑊𝑇+1, where 𝑇 = [𝑖, 𝑗] and
𝑇 + 1 = [𝑗 + 1, 𝑘].

In general, there are three types of concept evolution, as shown in Fig.3. We use the binary rela-
tions 𝐸, 𝐷 , and 𝐹 to represent concept emerging, concept drift, and concept forgetting respectively
as follows:

Definition 3.5. [Three Types of Concept Evolution]
• Concept Emerging 𝐸 (𝑇,𝑇+1) = {⟨∅, 𝑐 𝑗 ⟩|𝑐 𝑗 ∉𝑊𝑇 ∧ 𝑐 𝑗 ∈𝑊𝑇+1}: concept 𝑐 𝑗 exists in𝑊𝑇+1 and
does not exist in𝑊𝑇 ;

• Concept Drift 𝐷 (𝑇,𝑇+1) = {⟨𝑐𝑖 , 𝑐 𝑗 ⟩|𝑐𝑖 ∈𝑊𝑇 ∧ 𝑐 𝑗 ∈𝑊𝑇+1}: concept 𝑐𝑖 in𝑊𝑇 and concept 𝑐 𝑗 in
𝑊𝑇+1 are similar, but they are not exactly the same;

• Concept Forgetting 𝐹 (𝑇,𝑇+1) = {⟨𝑐𝑖 , ∅⟩|𝑐𝑖 ∈𝑊𝑇 ∧ 𝑐𝑖 ∉𝑊𝑇+1}: concept 𝑐𝑖 exists in𝑊𝑇 and
does not exist in𝑊𝑇+1.

Fig. 3. Concept evolution between two feature windows 𝐹𝑇 and 𝐹𝑇+1, where ‘grey’ indicates concepts that
have not evolved, ‘red’ indicates emerging concepts, ‘green’ indicates concepts that have drifted, and ‘yellow’
is the forgotten concepts.

3.2 Case Study of Concept Evolution
In a general instance stream, the feature space is fixed, and many existing methods use model error
rates to detect whether concepts have changed. However, the feature space continues to arrive in a
feature stream, and we cannot require the label information in real-time. For the same object, with
the increase in new streaming features, our perception of it may change. Therefore, we clustered
all the samples into different clusters and used the variations of the clusters to indicate the concept
changes. In this section, we use three metrics to evaluate the clustering results among different
feature windows to determine whether concept evolution exists over different feature streams. We
conduct the following experiments on three high-dimensional datasets (Lung2, Prostate, Dlbcl) as
shown in Table 5.

Specifically, we divide thewhole feature space of these three datasets into several featurewindows,
where the size of each feature window is fixed at 1,000. For example, since the number of features
in Lung2 is 3312, there are three feature windows: 𝐹1 = 𝐹 [1,1000], 𝐹2 = 𝐹 [1001,2000], 𝐹3 = 𝐹 [2001,3000] .
Similarly, since the numbers of features of datasets Prostate and Dlbcl are 5966 and 6285, they are
divided into six feature windows, 𝐹1 to 𝐹6. Then, we apply k-means to each feature window, and
the values of parameter 𝑘 are selected from 2 to 6. We use Dunn Index (𝐷𝐼) [33], Davies-Bouldin
Index (𝐷𝐵𝐼) [33] and Rand Index (𝑅) [43] to evaluate the clustering performance of different 𝑘
among different feature windows to potentially judge whether evolutionary behavior will occur.
𝐷𝐼 and 𝐷𝐵𝐼 are internally valid indicators that evaluate the clustering classification in terms of

, Vol. 1, No. 1, Article . Publication date: July 2020.

10 Peng Zhou et al.

tightness, separability, connectivity, and overlap based mainly on the set structure information of
the dataset. The 𝑅 is a measure of agreement between two clustering solutions, which rewards true
positives and true negatives and penalizes false positives and false negatives.
The 𝐷𝐼 metric calculates the shortest distance between any two cluster elements (between

classes) divided by the longest distance between any two clusters (within classes). 𝐷𝐼 is defined as
follows:

𝑑𝑖𝑎𝑚(𝐶) = 𝑚𝑎𝑥
∀𝑥𝑖 ,𝑥 𝑗 ∈𝐶

𝑥𝑖 − 𝑥 𝑗

2 , (1)

𝑑𝑚𝑖𝑛 (𝐶𝑖 ,𝐶 𝑗) = 𝑚𝑖𝑛
∀𝑥𝑖 ∈𝐶𝑖 ,∀𝑥 𝑗 ∈𝐶 𝑗

𝑥𝑖 − 𝑥 𝑗

2 , (2)

𝐷𝐼 =

𝑚𝑖𝑛
1≤𝑖< 𝑗≤𝑘

𝑑𝑚𝑖𝑛 (𝐶𝑖 ,𝐶 𝑗)

𝑚𝑎𝑥
1≤𝑙≤𝑘

𝑑𝑖𝑎𝑚(𝐶𝑙)
, (3)

where 𝑘 is the total number of clusters, 𝑑𝑖𝑎𝑚(𝐶) denotes the farthest distance between samples
within cluster 𝐶 , 𝑑𝑚𝑖𝑛 (𝐶𝑖 ,𝐶 𝑗) denotes the distance between the nearest samples of cluster 𝐶𝑖 and
cluster 𝐶 𝑗 , and

𝑥𝑖 − 𝑥 𝑗

2 denotes the distance between cluster elements in two clusters. A larger
value of 𝐷𝐼 means a larger inter-class distance while a smaller intra-class distance.
𝐷𝐵𝐼 uses the distance of sample points within a class to its cluster centers to estimate intra-class

tightness and the clustering between cluster centers to indicate inter-class separability. 𝐷𝐵𝐼 is
defined as follows:

𝑑𝑐𝑒𝑛 (𝐶𝑖 ,𝐶 𝑗) = 𝑑𝑖𝑠𝑡 (𝜇𝑖 , 𝜇 𝑗), (4)

𝑎𝑣𝑔(𝐶) = 2
|𝐶 | (|𝐶 | − 1)

∑︁
∀𝑥𝑖 ,𝑥 𝑗 ∈𝐶

𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗), (5)

𝐷𝐵𝐼 =
1
𝑘

𝑘∑︁
𝑖=1

𝑚𝑎𝑥
𝑗≠𝑖

(
𝑎𝑣𝑔(𝐶𝑖) + 𝑎𝑣𝑔(𝐶 𝑗)

𝑑𝑐𝑒𝑛 (𝐶𝑖 ,𝐶 𝑗)

)
, (6)

where 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗) is used to calculate the distance between two samples, 𝜇 represents the centroid
of cluster 𝐶 , 𝜇 = 1

|𝐶 |
∑

1≤𝑖≤ |𝐶 | 𝑥𝑖 , 𝑎𝑣𝑔(𝐶) represents the average distance between samples within
cluster 𝐶 , and 𝑑𝑐𝑒𝑛 (𝐶𝑖 ,𝐶 𝑗) represents the distance between the centroids of 𝐶𝑖 and 𝐶 𝑗 . A smaller
value of 𝐷𝐵𝐼 means smaller intra-class clusters and larger inter-class distances.

In simple terms, 𝑅 measures the accuracy of the algorithm as follows:

𝑅 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 , (7)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 denote the number of true positive, true negative, false positive and
false negative decisions, respectively. For the Rand index, the ideal clustering solution will have a
value close to 1, while the poorer solution will have a value close to 0. The larger the 𝑅 value, the
better the clustering performance.
Table 2 indicates the experiment results of 𝐷𝐼 , 𝐷𝐵𝐼 , and 𝑅 obtained from k-means when the

number of clusters in each feature window varies from 2 to 6 on three high-dimensional datasets.
Specifically, on dataset Lung2, the maximum value of 𝐷𝐼 in difference feature window are 𝑘 = 4,
𝑘 = 2, and 𝑘 = 3. Meanwhile, on datasets Prostate and Dlbcl, the optimal number of clusters also
changes during different feature windows. We use different clusters to indicate different concepts
in the experiments. In other words, for dataset Lung2, the optimal number of concepts from feature
window 𝐹1 to 𝐹3 are 4, 2, and 3. Therefore, there exists concept changing over feature streams. This
paper aims to detect this concept evolution over feature streams.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 11

Table 2. Concept changing was verified on three high-dimensional datasets using the k-means algorithm
(from 𝑘 = 2 to 𝑘 = 6) on different feature windows (𝐹𝑖). The bold fonts indicate the best clustering performance
among different feature windows with different values of 𝑘 .

(a) Clustering results on dataset Lung2
DI DBI R

F1 F2 F3 F1 F2 F3 F1 F2 F3
k=2 0.399 0.474 0.422 1.721 1.497 1.591 0.678 0.696 0.696
k=3 0.418 0.442 0.453 2.898 1.212 2.714 0.781 0.631 0.691
k=4 0.486 0.434 0.423 2.815 1.967 3.098 0.678 0.715 0.782
k=5 0.471 0.398 0.429 2.527 2.969 2.947 0.766 0.665 0.754
k=6 0.467 0.422 0.423 2.916 3.128 2.139 0.702 0.771 0.622

(b) Clustering results on dataset Prostate
DI DBI R

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6
k=2 0.311 0.693 0.303 0.308 0.338 0.318 0.997 1.070 1.251 1.326 1.208 1.138 0.511 0.511 0.514 0.505 0.511 0.511
k=3 0.382 0.291 0.293 0.295 0.352 0.311 0.824 1.382 1.010 1.536 1.535 1.422 0.506 0.512 0.529 0.526 0.512 0.509
k=4 0.313 0.273 0.336 0.333 0.314 0.291 1.507 1.738 2.270 1.922 1.960 1.893 0.508 0.505 0.526 0.522 0.546 0.513
k=5 0.325 0.300 0.253 0.349 0.317 0.312 1.837 2.189 2.057 1.452 1.635 1.108 0.506 0.518 0.515 0.532 0.506 0.521
k=6 0.303 0.277 0.287 0.322 0.313 0.325 1.993 1.749 1.935 1.874 2.256 1.147 0.506 0.500 0.538 0.518 0.524 0.540

(c) Clustering results on dataset Dlbcl
DI DBI R

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6
k=2 0.434 0.455 0.441 0.464 0.773 0.482 2.359 2.406 2.460 2.459 0.511 2.661 0.513 0.598 0.513 0.518 0.547 0.576
k=3 0.434 0.460 0.470 0.455 0.476 0.474 2.220 2.618 2.711 2.625 2.231 3.020 0.479 0.491 0.577 0.577 0.517 0.487
k=4 0.454 0.457 0.452 0.480 0.448 0.482 2.266 2.668 2.602 2.472 2.418 2.351 0.457 0.513 0.518 0.471 0.472 0.440
k=5 0.432 0.481 0.518 0.474 0.448 0.470 2.532 2.862 2.231 2.283 2.386 2.639 0.465 0.452 0.442 0.451 0.506 0.437
k=6 0.439 0.475 0.474 0.458 0.443 0.490 2.211 2.916 2.369 2.434 2.653 2.233 0.459 0.439 0.441 0.469 0.429 0.461

4 THE PROPOSED FRAMEWORK
Unlike traditional data mining, where static datasets can be iterated over repeatedly, feature streams
arrive with very large or potentially infinite amounts of data. Therefore, feature stream mining
requires a window technique, and we can only compute and store a small fraction of the whole
feature streams. Besides, we use clustering to approximate the concepts in each feature window
and detect the concept changing by analyzing the relationships among different clusters. Therefore,
our new proposed framework for concept evolution detection over feature streams, named CED-FS,
consists of three components: a sliding window, a clustering algorithm, and a concept-changing
detection mechanism. The details of CED-FS are shown in Fig. 4.

4.1 Data Retrieval by a Sliding Window
In some practical applications, we are faced with datasets that are large in sample size and high in
dimensionality while having streaming characteristics. Therefore, storing and using all the feature
streams for data mining is impractical. In other words, we can only deal with a portion of the
whole stream. The sliding window mechanism is commonly used to solve this memory constraint
problem [35].

In this paper, we aim to detect concept evolution over feature stream. However, we cannot know
precisely when concept evolution occurs before learning. Therefore, we divide the feature streams
into equal-sized blocks using sliding windows. The size of a data block is equal to the size of a
sliding window [55].
Concept evolution involves multiple influencing factors, such as environmental changes, user

behavior, or system dynamics. These factors may interact in a complex manner. However, when
aggregated, their combined effect could approximate a normal distribution due to the contributing
elements’ diversity and randomness. While the assumption of a normal distribution for concept

, Vol. 1, No. 1, Article . Publication date: July 2020.

12 Peng Zhou et al.

Fig. 4. The CED-FS framework consists of three main phases: data retrieval, data modeling, and concept
evolution detection. Specifically, data retrieval uses a sliding window mechanism to cache the latest streaming
features. Data modeling constructs an effective clustering model based on the current feature stream window.
Concept evolution detection uses weighted bipartite graphs to detect concept evolution based on the clustering
results between two adjacent windows. In Stage 3, a weight matrix 𝑆 of the bipartite graph (a) is obtained
according to the weighting formula. Then the maximum value of each row and column of 𝑆 is compared with
the given threshold to obtain the graph (b). In (b), the clusters that did not undergo concept evolution are
colored gray and connected with black lines, while the drifting concepts are colored green and connected
with black lines. Besides, in the concept set𝑊𝑡 , the forgotten concepts are colored yellow and connected
without lines. Meanwhile, the emerging concepts are colored red and also connected without lines in the
concept set𝑊𝑡+1.

evolution in sliding windowsmay not be universally applicable, it can be substantiated by theoretical
considerations, empirical evidence, and the convenience it offers for mathematical modeling and
analysis. Hence, we assume that the probability of concept evolution within the sliding window
conforms to a normal distribution.
Theorem 1. Let 𝑤 be the size of a sliding window. Assume that the probability of concept

evolution in the sliding window obeys a normal distribution:

𝑓 (𝑥) = 𝜖
√
2𝜋
𝑒−

𝑥2
2 , (1 ≤ 𝑥 ≤ 𝑤) (8)

therefore, the size of a sliding window𝑤 should be𝑤 ≤
√︃
−2𝑙𝑛(𝜖2𝑒

− 1
2 −2

𝜖2
) and

√︃
2

𝑒
− 1
2
≤ 𝜖 , where 𝜖 is

a predefined parameter.
Including the value of 𝜖 in the function 𝑓 (𝑥) allows for scaling or adjusting the amplitude of the

Gaussian distribution. This scaling factor 𝜖 enables the adjustment of the height or magnitude of the
probability density function, making it suitable for various applications where different scales or
amplitudes are required. Here this scaling factor 𝜖 still maintains 𝑓 (𝑥) as a probability distribution.
It is important to note that for any probability distribution function 𝑓 (𝑥) the integral over its entire
domain must be equal to 1. By appropriately including 𝜖 , 𝑓 (𝑥) on the interval 1 ≤ 𝑥 ≤ 𝑤 can still
be normalized to 1, ensuring that 𝑓 (𝑥) remains a valid probability density function in that interval.

Proof. For a sliding window, let 𝑆 =
∫ 𝑤

1
𝜖√
2𝜋
𝑒−

𝑥2
2 𝑑𝑥 =

∫ 𝑤

1
𝜖√
2𝜋
𝑒−

𝑦2
2 𝑑𝑦

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 13

⇒ 𝑆2 =
∫ 𝑤

1

∫ 𝑤

1
𝜖√
2𝜋
𝑒−

𝑥2
2 𝜖√

2𝜋
𝑒−

𝑦2
2 𝑑𝑥𝑑𝑦 =

∫ 𝑤

1

∫ 𝑤

1
𝜖2

2𝜋 𝑒
− 𝑥2+𝑦2

2 𝑑𝑥𝑑𝑦

Let 𝑥 = 𝜌𝑐𝑜𝑠𝜃,𝑦 = 𝜌𝑠𝑖𝑛𝜃 ⇒ 𝑑𝑥𝑑𝑦 = 𝜌𝑑𝜌𝑑𝜃, 1 ≤ 𝜌 ≤ 𝑤 𝑎𝑛𝑑 0 ≤ 𝜃 ≤ 𝜋 ;
𝑆2 = 𝜖2

2𝜋

∫ 𝜋

0

∫ 𝑤

1 𝑒−
𝜌2
2 𝜌𝑑𝜃𝑑𝜌 = 𝜖2

2𝜋 · 𝜋
∫ 𝑤

1 𝑒−
𝜌2
2 𝜌𝑑𝜌 = 𝜖2

2

∫ 𝑤

1 𝑒−
𝜌2
2 𝜌𝑑𝜌 = 𝜖2

2 (𝑒
− 1

2 − 𝑒−𝑤2
2)

∵ 𝑆2 ≤ 1 ∴ 𝜖2𝑒−
1
2 − 𝜖2𝑒−

𝑤2
2 ≤ 2 ⇒ 𝑒−

𝑤2
2 ≥ 𝜖2𝑒−

1
2 −2

𝜖2
⇒ −𝑤2

2 ≥ 𝑙𝑛(𝜖2𝑒
− 1
2 −2

𝜖2
) ⇒ 𝑤 ≤√︃

−2𝑙𝑛(𝜖2𝑒
− 1
2 −2

𝜖2
)

∴ 𝜖2𝑒−
1
2 −2

𝜖2
≤ 1 𝑎𝑛𝑑 𝜖2𝑒− 1

2 − 2 ≥ 0 ⇒
√︃

2
𝑒
− 1
2
≤ 𝜖 .

In our experiments, we set 𝜖 =
√︃

2
𝑒
− 1
2
and𝑤 = 1, 000. It is easy to verify that𝑤 ≤

√︃
−2𝑙𝑛(𝜖2𝑒

− 1
2 −2

𝜖2
).

4.2 Data Modeling by an Improved Clustering Algorithm
We use clustering to approximate the concepts in each streaming feature window before concept
evolution detection. Therefore, we cannot know the number of concepts in advance. In other words,
the clustering algorithm should not depend on the number of clusters before learning. Besides, the
clustering algorithm should efficiently meet the online learning demands.

4.2.1 Density Peak Clustering. The density peak clustering (DPC) [45] argues that a cluster center
is characterized by a higher density than its neighbors and a relatively large distance from any
locally dense point. DPC has two quantities that need to be calculated: first, the local density 𝜌𝑖 of
a point; second, the distance 𝛿𝑖 from the point with higher density. If 𝜌𝑖 and 𝛿𝑖 are high at a point,
the point is likely to be a cluster center. These two quantities correspond to the two hypotheses of
cluster centers.

Specifically, suppose dataset D = [𝑥1;𝑥2; . . .;𝑥𝑛] contains 𝑛 objects, and each data object contains
𝑚 dimensional attributes, denoted as 𝑥𝑖 = [𝑥1𝑖 , 𝑥2𝑖 , . . ., 𝑥𝑚𝑖]. The distance between any two objects 𝑥𝑖
and 𝑥 𝑗 in dataset 𝑋 is calculated by Euclidean distance and expressed as:

𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗) = | |𝑥𝑖 − 𝑥 𝑗 | |2 . (9)

Then, the local density 𝜌𝑖 of the data object 𝑥𝑖 is defined as:

𝜌𝑖 =
∑︁
𝑗

𝜒 (𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗) − 𝑑𝑐), (10)

𝜒 (𝑥) =
{

1 , 𝑥 ≤ 0
0 , 𝑥 > 0

(11)

where 𝑑𝑐 represents the cut-off distance. Equation (10) finds the number of data points whose
distance from the 𝑖𝑡ℎ data point is less than the cut-off distance 𝑑𝑐 , and use it as the density of the
𝑖𝑡ℎ data point.

Another way to express 𝜌𝑖 , which is defined as a Gaussian kernel function [45], as follows:

𝜌𝑖 =
∑︁
𝑗

𝑒𝑥𝑝 (−
𝑑𝑖𝑠𝑡2 (𝑥𝑖 , 𝑥 𝑗)

𝑑2𝑐
), (12)

where 𝑑𝑐 is an adjustable parameter controlling the weight degradation rate, and the point 𝑗 is
eligible when 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗) is less than 𝑑𝑐 .
𝛿𝑖 is measured by computing the minimum distance between point 𝑥𝑖 and any other point of

higher density:
𝛿𝑖 = 𝑚𝑖𝑛

𝑗 :𝜌 𝑗>𝜌𝑖
(𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗)) . (13)

, Vol. 1, No. 1, Article . Publication date: July 2020.

14 Peng Zhou et al.

For the point with the highest density, we usually take 𝛿𝑖 =𝑚𝑎𝑥 𝑗 (𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗)). Note that 𝛿𝑖 is
much larger than the typical nearest neighbor distance only for points that are local or global
maxima in the density.
After calculating these two quantities, the clustering will be executed in two steps: finding the

cluster centers and assigning labels to the other points. 𝜌𝑖 and 𝛿𝑖 depend on the distance between
data points 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗), and the cluster centers are thought to have higher values of 𝜌𝑖 and 𝛿𝑖 . The
points with high 𝜌𝑖 and 𝛿𝑖 values are also called peaks with higher densities than other points.

-2 0 2 4 6 8 10

-2

0

2

4

6

8

�

X

Y

(a)

 �

�

0 5 10 15

0

4

3

2

5

1

6

(b)

10

Fig. 5. An illustrated example of DPC clustering. (a) The distribution of data. (b) An example of a decision
graph, where the X-coordinate is local density 𝜌 and the Y-coordinate is 𝛿 . The manual selection is in the
upper right corner, while those points in the box are labeled cluster centers.

An example of DPC clustering is shown in Fig. 5, where the target data points are plotted in
Fig. 5(a) and Fig. 5(b) represents a plot of 𝛿𝑖 as a function of each point’s 𝜌𝑖 . Those points are
sampled in two Gaussian distributions. The two points of larger size serve as the centers of the
two clusters with the largest cluster density. The user can select a region containing individual
points on the decision graph, and the points within this region are selected as centroids. Fig. 5(b)
gives an example of the selection in the decision graph. A rectangle is drawn in the upper right,
and the points within this rectangle are marked as centers. Since the structural information of the
data is visualized in the decision graph, it can be understood and utilized by the user. After the
cluster centers have been found, each remaining data point is assigned to the cluster of its nearest
neighbors with a greater density than its data points.

4.2.2 Improved DPC Algorithm. DPC has many advantages, such as not needing to specify the
number of clusters, requiring fewer parameters, and does not require an iterative process to detect
non-spherical clusters. However, DPC also has some drawbacks [25, 54, 56]. Specifically, in some
practical applications, when the dimensionality of the dataset is relatively high, the number of
clusters generated by DPC may be wrong, and the model performance decreases. In feature stream
learning, the dimensionality is consistently high or even infinite. Therefore, we introduced kernel
principal component analysis in the DPC to handle this drawback.

Principal component analysis (PCA) is a well-known feature extraction method [6]. By computing
the eigenvectors of the original input covariance matrix, PCA linearly transforms high-dimensional
input vectors into low-dimensional input vectors whose components are uncorrelated. Kernel
principal component analysis (KPCA) is a nonlinear PCA developed by extending the kernel method
to PCA [48]. Specifically, KPCA uses a kernel function to map the original input to high-dimensional
feature space and then computes principal component analysis in the high-dimensional feature
space. The linear principal component analysis in the high-dimensional feature space corresponds
to the nonlinear principal component analysis in the original input space. However, in practical

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 15

applications, there are many nonlinear data, and it is difficult for ordinary PCA techniques to make
corresponding optimization choices in dealing with nonlinear problems. The KPCA algorithm is a
reliable choice for processing nonlinear data, both in terms of theoretical explanation and practical
results. The common kernel functions are Gaussian kernel 𝑘 = 𝑒𝑥𝑝 (− | |𝑥𝑖−𝑥 𝑗 | |22

2𝜎2), exponential kernel
𝑘 = 𝑒𝑥𝑝 (− | |𝑥𝑖−𝑥 𝑗 | |2

2𝜎2), Laplace kernel 𝑘 = 𝑒𝑥𝑝 (− | |𝑥𝑖−𝑥 𝑗 | |2
𝜎

), etc, where 𝜎 is kernel function parameter.
In order to address the impact of the dimensional disaster on the performance of the DPC

algorithm, we introduce KPCA to make the samples linearly separable in low-dimensional space.
The details of KPCA are shown in Algorithm 1.

Algorithm 1 KPCA.
Input:

Original data 𝑋 ∈𝑁×𝐷 ;
Kernel function parameter 𝜎 ;
Target dimension 𝑑 ;

Output:
Reduced dimensional data 𝑌 ∈𝑁×𝑑 ;

1: Select the kernel function 𝑘 to calculate the kernel matrix 𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖 , 𝑥 𝑗), where 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ,
𝐾 ∈ 𝑁 × 𝑁 ;

2: Center the kernel matrix according to 𝐾𝐼 = 𝐾 − 𝐼 ∗ 𝐾/𝑁 − 𝐾 ∗ 𝐼/𝑁 + 𝐼 ∗ 𝐾 ∗ 𝐼 (𝑁 ∗ 𝑁) , I is the
identity matrix of 𝑁 × 𝑁 ;

3: Calculate the eigenvalues and eigenvectors of 𝐾𝐼 ;
4: Obtain the largest 𝑑 eigenvalues and their corresponding eigenvectors, then unit-

orthonormalized eigenvectors;
5: Collect 𝑑 unit orthogonal vectors, generate a dimension reduction matrix𝑈 (𝑈 ∈ [𝑁,𝑑]);
6: Obtain the new subspace 𝑌 = 𝐾𝐼 ∗𝑈 ;
7: return 𝑌 ;

Besides, the choice of parameter cutoff distance 𝑑𝑐 significantly impacts the performance of DPC.
If the selected 𝑑𝑐 is very low, although the distance between cluster centers can be distinguished
on the decision graph, it will lead to the wrong selection of the initial cluster centers. To avoid
the possible detrimental effects of the cutoff distance, we distinguish the density peaks of all data
points by introducing the idea of reverse k-nearest neighbor (RkNN) into DPC.
𝑘 Nearest Neighbors (kNN) is one of the most representative classification methods and has

also been applied to clustering [19, 41]. The basic idea of kNN is to find the 𝑘 nearest neighbors of
the target instance among 𝑁 samples. Usually, after calculating the Euclidean distances between
the target instance and its neighbors, we sort these distances in ascending order and find the top
𝑘 nearest neighbors. kNN and reverse kNN are symmetric neighborhood relations [20], and the
reverse can also be obtained in the process of kNN. Suppose 𝑁𝑁𝑘 (𝑥𝑖) be the 𝑘𝑡ℎ nearest point to 𝑥𝑖 ,
kNN (𝑥𝑖) can be defined as:

𝑘𝑁𝑁 (𝑥𝑖) =
{
𝑥 𝑗 |𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗) ≤ 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑁𝑁𝑘 (𝑥𝑖))

}
, (14)

where if 𝑥 𝑗 satisfies (14), we call 𝑥 𝑗 as one of the kNN of 𝑥𝑖 .
Suppose the point 𝑥𝑖 is regarded as the kNN of 𝑥 𝑗 , the definition of RkNN (𝑥𝑖) is:

𝑅𝑘𝑁𝑁 (𝑥𝑖) =
{
𝑥 𝑗 |𝑥𝑖 ∈ 𝑘𝑁𝑁 (𝑥 𝑗)

}
, (15)

where 𝑥 𝑗 satisfies (15), we call 𝑥 𝑗 as one of the RkNN of 𝑥𝑖 . Fig.6 visualizes the difference between
kNN and RkNN.

, Vol. 1, No. 1, Article . Publication date: July 2020.

16 Peng Zhou et al.

A

B

D

E

F

G

H

I

F

E

A

D

H

I G

B

C C

(a) (b)

Fig. 6. Intuitionistic presentation for (a) kNN and (b) RkNN when 𝑘 = 3. The target instance 𝐶 has three
nearest neighbors, 𝐴, 𝐵, and 𝐷 in kNN. While in RkNN, the instance 𝐶 has four reverse 𝑘 nearest neighbors
𝐴, 𝐵, 𝐷 , and 𝐻 , since it falls into the 3-nearest neighborhoods of these four instances.

Generally, the kNN of point 𝑥𝑖 will return at least 𝑘 results, while the RkNN may have zero or
more results. We use the RkNN of a point to calculate the local density instead of the kNN, which
allows the difference between the local density of clustered centroids and non-clustered centroids
to be magnified. The new definition of local density in terms of RkNN is as follows:

𝜌𝑖 =
∑︁

𝑥 𝑗 ∈𝑅𝑘𝑁𝑁 (𝑥𝑖)
𝑒𝑥𝑝 (−

𝑑𝑖𝑠𝑡2 (𝑥𝑖 , 𝑥 𝑗)
𝑟 2
𝑘

), (16)

where 𝑅𝑘𝑁𝑁 (𝑥𝑖) is the reverse kNN of point 𝑥𝑖 , and 𝑟𝑘 is the number of reverse 𝑘 nearest neighbors
of point 𝑥𝑖 . The new definition indicates that the local density 𝜌𝑖 of point 𝑥𝑖 is influenced by
the distribution information of its reverse kNN. The value of 𝑟𝑘 is easier to determine than 𝑑𝑐 .
Specifically, the value of 𝑘 can be specified as a percentage (𝑝) of the number of points 𝑁 , that is,
𝑘 = 𝑝 × 𝑁 .

To sum up, we propose a new, improved DPC-based clustering algorithm (KDPC-RkNN) with
kernel principal component analysis and reverse k-nearest neighbor. Algorithm 2 is a summary of
KDPC-RkNN.

Algorithm 2 KDPC-RkNN.
Input:

A data matrix 𝐵𝑖 (𝑖 = 1, 2, 3, · · ·);
Kernel function parameter 𝜎 ;
Target dimension 𝑑 ;
The number of nearest neighbors 𝑘 ;

Output:
The set of clusters 𝐶 = {𝑐1, 𝑐2, · · · , 𝑐𝑚};

1: Calculate the reduced dimensional dataset 𝑍 by KPCA as shown in Algorithm 1;
2: Calculate the distances between each pair of point 𝑥𝑖 and point 𝑥 𝑗 on 𝑍 by formula (9);
3: Calculate 𝑟𝑘 and 𝑟𝑑𝑖𝑠𝑡 for each point 𝑥𝑖 in terms of RkNN, where 𝑟𝑘 is the number of reverse 𝑘

nearest neighbors of point 𝑥𝑖 , and 𝑟𝑑𝑖𝑠𝑡 is the reverse nearest neighbor distance;
4: Calculate 𝜌𝑖 and 𝛿𝑖 for each point 𝑥𝑖 respectively by using formula (16) and (13);
5: Draw the decision graph according to 𝜌 and 𝛿 , and manually select those points which stand

out in the decision graph as cluster centers;
6: Assign each remaining points to the same cluster as its nearest neighbors with higher density;
7: return 𝐶;

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 17

4.2.3 Complexity Analysis of KDPC-RkNN. The space complexity of the DPC is 𝑂 (𝑛2), mainly due
to the storage of the distance matrix, where 𝑛 is the number of instances for the target dataset. For
KDPC-RkNN, besides the storage of the neighbors of kNN and RkNN 𝑂 (𝑘𝑛 + 𝑛), KPCA needs to
store and compute the eigenvectors of a 𝑛 × 𝑛 kernel matrix 𝑂 (𝑛2). Thus, the space complexity of
KDPC-RkNN is 𝑂 (𝑛2).
The time complexity of KDPC-RkNN depends on the following four aspects: (a) For step 1, the

time complexity of KPCA is 𝑂 (𝑛3); (b) Step 2 calculates the distance between each pair of two
points with a time complexity of 𝑂 (𝑛2); (c) Step 4 calculates the local density 𝜌𝑖 using RkNN with
a time complexity of𝑂 (𝑟𝑘 ∗𝑛), where 𝑟𝑘 is the number of points in the reverse kNN of point 𝑥𝑖 and
𝑟𝑘 is not greater than 𝑛. Meanwhile, the time complexity of calculating the distance 𝛿𝑖 of point 𝑥𝑖 is
𝑂 (𝑛2); (d) Step 6 assigns points to the most appropriate cluster with a time complexity of𝑂 (𝑛2). In
sum, the time complexity of KDPC-RkNN is 𝑂 (𝑛3).

4.3 Concept Evolution Detection by a Weighted Bipartite Graph
Using the KDPC-RkNN clustering algorithm, we can get the clusters for each feature window. To
detect the concept evolution over feature streams, we should measure the similarity of each pair
of clusters between two adjacent feature windows. In this paper, we construct a bipartite graph
using the set of clusters from two adjacent feature windows by introducing a parsimonious method
(bipartite graph) [11]. The resulting graph models the clusters as vertices in the graph, allowing
similarities between clusters to be considered in forming the final cluster. Therefore, we propose a
weighted bipartite graph-based concept evolution detection method that converts the problem to a
bipartite graph partitioning problem.
Specifically, in the mathematical field of graph theory, a bipartite graph is a type of graph

where the set of vertices can be separated into two distinct, non-overlapping sets𝑈 and 𝑉 . Each
edge in the graph links a vertex in set 𝑈 to a vertex in set 𝑉 , and there are no edges connecting
vertices within the same set. These sets 𝑈 and 𝑉 are often referred to as the two parts of the
graph[44]. Given a bipartite graph 𝐺 = (𝑉 , 𝐸), with vertex partition 𝑉 = 𝑉1 ∪ 𝑉2, and edge set
𝐸 = {(𝑢, 𝑣) | 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2}. 𝐺 is called a weighted bipartite graph if every edge (𝑢, 𝑣) is associated
with a weight𝑤 (𝑢, 𝑣). Bipartite graphs are widely used in areas such as image segmentation, cluster
ensemble and graph edit distance computation [26].
Let𝑊𝑇 = {𝑐𝑖 } |𝑊𝑡 |

𝑖=1 and𝑊𝑇+1 =
{
𝑐 𝑗
} |𝑊𝑡+1 |
𝑗=1 denote two sets of clustering results in two adjacent

feature windows, where 𝑐𝑖 and 𝑐 𝑗 represent the concepts in each set.Wemodel𝑊𝑇 and𝑊𝑇+1 together
as a weighted bipartite graph𝐺 = (𝑉 , 𝐸), where𝑉 =𝑊𝑇 ∪𝑊𝑇+1, 𝐸 =

{
(𝑐𝑖 , 𝑐 𝑗) | 𝑐𝑖 ∈𝑊𝑇 , 𝑐 𝑗 ∈𝑊𝑇+1

}
,

and𝑤 (𝑐𝑖 , 𝑐 𝑗) is determined by the similarity between a pair of concepts 𝑐𝑖 and 𝑐 𝑗 . In our method,
all weights are calculated in the following way:

𝑤 (𝑐𝑖 , 𝑐 𝑗) =
2
��𝑐𝑖 ∩ 𝑐 𝑗 ��

|𝑐𝑖 | +
��𝑐 𝑗 �� , (17)

where
��𝑐𝑖 ∩ 𝑐 𝑗 �� is the number of common instances. Then we can obtain a weight matrix 𝑆 (𝑡,𝑡+1) ∈

𝑅 |𝑊𝑇 |× |𝑊𝑇+1 | in terms of𝑊𝑇 and𝑊𝑇+1.
With the weight matrix 𝑆 , we compute the maximum value 𝑆𝑚𝑎𝑥 for each row (𝑖) of 𝑆 and its

column index value (𝑗). There are four different cases:
• If 0.5 ≤ 𝑆𝑚𝑎𝑥 < 1, which means the difference in distribution between 𝑐𝑖 and 𝑐 𝑗 is not
particularly large but not exactly similar, then we consider 𝑐 𝑗 undergoes a concept drift with
relative to 𝑐𝑖 .

• If 𝑆𝑚𝑎𝑥 = 1, which means 𝑐𝑖 is exactly similar to 𝑐 𝑗 . In other words, there is no concept
evolution between these two concepts.

, Vol. 1, No. 1, Article . Publication date: July 2020.

18 Peng Zhou et al.

• If 𝑆𝑚𝑎𝑥 < 0.5, which indicates the distribution between 𝑐𝑖 and each cluster 𝑐 𝑗 in𝑊𝑇+1 is very
different, then we consider 𝑐𝑖 undergoes a concept forgetting.

• The judgment of concept emerging is relatively symmetric to concept forgetting. We first get
the transpose matrix𝑇 of 𝑆 (𝑇 = 𝑆⊺). If the maximum value of𝑇𝑚𝑎𝑥 < 0.5 for each row (𝑗) in
𝑇 , which means a great difference between each cluster 𝑐𝑖 in𝑊𝑇 and 𝑐 𝑗 , then we consider 𝑐 𝑗
undergoes a concept emerging.

To verify the validity of the proposed concept evolution detectionmethod, we apply an experiment
test on dataset Lung2. Specifically, we divide the whole feature space of dataset Lung2 into three
feature windows where the number of features in each window is 1,000. After the clustering by our
proposed algorithm KDPC-RkNN, the number of clusters for each𝑊𝑇 (𝑇 = 1, 2, 3) are 4, 6, and 5,
respectively. The details of weight matrix 𝑆 for each two adjacent feature windows are shown in
Tables 3.

Table 3. Weighting Matrix 𝑆 of clustering results in two adjacent feature windows on Lung2 dataset. The
bold fonts indicate the 𝑆𝑚𝑎𝑥 per row.

(a) The weight matrix 𝑆 (1,2) for𝑊1 and𝑊2

𝑊1

𝑊2
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

𝑐1 0.027 0.944 0.066 0 0.059 0
𝑐2 0 0.039 0 0.903 0 0
𝑐3 0 0.013 0 0 0.857 0
𝑐4 0 0 0.074 0 0 0.976

(b) The weight matrix 𝑆 (2,3) for𝑊2 and𝑊3

𝑊2

𝑊3
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐1 0 0 0 0.160 0
𝑐2 0 0.986 0.013 0 0
𝑐3 0.909 0.014 0 0 0
𝑐4 0 0 0.966 0 0
𝑐5 0 0.245 0 0.913 0
𝑐6 0 0 0 0 1.000

In Tables 3 (a), 𝑆𝑚𝑎𝑥 = 0.944 > 0.5 for the first row which means there is a concept drift
for 𝑐1 in 𝑊1 relative to the concept 𝑐2 in 𝑊2. The second, third, and fourth rows are similar.
Therefore, we can get concept drift relation 𝐷 (1,2) = {⟨𝑐1, 𝑐2⟩, ⟨𝑐2, 𝑐4⟩, ⟨𝑐3, 𝑐5⟩, ⟨𝑐4, 𝑐6⟩}. For the
transpose matrix𝑇 of 𝑆 ,𝑇𝑚𝑎𝑥 < 0.5 for the first and third rows. Thus, we can get concept emerging
relation 𝐸 (1,2) = {⟨∅, 𝑐1⟩, ⟨∅, 𝑐3⟩}. In Tables 3 (b), 𝑆𝑚𝑎𝑥 < 0.5 for the first row. Therefore, there is
a concept forgetting 𝐹 (2,3) = {⟨𝑐1, ∅⟩}. Besides, 𝑆𝑚𝑎𝑥 = 1 for the last row, which means there is
no concept evolution for these two concepts. Besides, we can get concept drift relation 𝐷 (2,3) =
{⟨𝑐2, 𝑐2⟩, ⟨𝑐3, 𝑐1⟩, ⟨𝑐4, 𝑐3⟩, ⟨𝑐5, 𝑐4⟩}.
The general process of CED-FS is shown in Algorithm 3 below. The codes are publicly available

on Github 1.

1 https://github.com/doodzhou/Steam-Learning

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 19

Algorithm 3 CED-FS.
Input:

Streaming feature 𝑓𝑖 ;
The length of sliding window𝑤 ;
The target dimension size 𝑑 ;
The Kernel function parameter 𝜎 ;
The ratio of the nearest neighbors 𝑝;

Output:
Three types of concept evolution: 𝐸, 𝐷, 𝐹 ;

1: Set 𝑇 = 1, 𝐶 = {}, 𝐸 = {}, 𝐷 = {}, 𝐹 = {};
2: Repeat
3: Receive streaming features to form data matrix 𝐵𝑇 = {𝑓𝑖 , ..., 𝑓𝑖+𝑤−1};
4: 𝑘 = 𝑝 × 𝑁 , where 𝑁 is the number of instances;
5: 𝐶𝑇 = 𝐾𝐷𝑃𝐶 − 𝑅𝑘𝑁𝑁 (𝐵𝑇 , 𝜎, 𝑑, 𝑘);
6: 𝐶 = 𝐶 ∪ {𝐶𝑇 };
7: If 𝑇 == 1
8: Continue;
9: End If;
10: Calculate the weight matrix 𝑆 (𝑇−1,𝑇) betwee 𝐶𝑇−1 and 𝐶𝑇 ;
11: Use 𝑆 (𝑇−1,𝑇) to determine the concept evolution behaviors: 𝐸 (𝑇−1,𝑇) , 𝐷 (𝑇−1,𝑇) , 𝐹 (𝑇−1,𝑇) ;
12: 𝐸 = 𝐸 ∪ {𝐸 (𝑇−1,𝑇) }, 𝐷 = 𝐷 ∪ {𝐷 (𝑇−1,𝑇) }, 𝐹 = 𝐹 ∪ {𝐹 (𝑇−1,𝑇) };
13: 𝑇 = 𝑇 + 1;
14: Until no more streaming features
15: return 𝐸, 𝐷, 𝐹 ;

5 EXPERIMENTS
This section first presents the experiment setup, including datasets, evaluation metrics, competing
algorithms, and statistical tests. Since our new method is the first algorithm designed for concept
evolution detection over feature streams, no competing algorithms exist. Meanwhile, existing
concept evaluation detection methods for data streams cannot be applied to feature streams. For
our new concept evolution detection framework, the effectiveness of clustering is fundamental.
Therefore, we first validate the effectiveness of our new clustering algorithm KDPC-RkNN on
five synthetic datasets. Meanwhile, we compared KDPC-RkNN with state-of-the-art clustering
methods on several real-world datasets. Then, we apply our new framework, CED-FS, on nine
high-dimensional datasets to illustrate the effectiveness of concept evaluation detection. Finally,
we present the parameter analysis of CED-FS.

5.1 Experiment Setup
5.1.1 Datasets. Wefirst verify the clustering performance of KDPC-RkNN on five synthetic datasets
1 as shown in Fig. 7. The number of data points for these five datasets varies from small to large
with different numbers of clusters, and the distribution of points is a challenge in detecting clusters.

Specifically, Dataset (a) is generated from 15 similar two-dimensional Gaussian distributions
located in a ring and contains 600 points. A total of ten spherical clusters are contained in it, with
seven nearby clusters. Dataset (b) consists of seven groups of perceptually different points where
non-Gaussian clustering exists and contains 788 points. Compared with other datasets, it has two

1 http://cs.uef.fi/sipu/datasets.

, Vol. 1, No. 1, Article . Publication date: July 2020.

20 Peng Zhou et al.

weakly connected cluster pairs. Dataset (c) has different sizes and shapes and contains 240 points.
It contains a spherical cluster and a close crescent-shaped cluster. Dataset (d) consists of three
spherical and three irregular data, containing 399 points. Clusters in this are more challenging
in distributions, which contain two weakly connected spherical clusters, a non-spherical dense
cluster, and a sparse cluster. Meanwhile, a ring cluster surrounds a spherical cluster, appearing as
an island distribution. Dataset (e) has 300 points and consists of a circular cluster with an opening
near the bottom and two Gaussian distribution clusters. It contains two dense clusters in the shape
of spheres surrounded by a ring-shaped cluster with a significant density difference.
Meanwhile, we compare KDPC-RkNN with six state-of-the-art clustering algorithms on nine

real-world datasets, as shown in Table 4. The details of these datasets can be seen in the UC Irvine
Machine Learning Repository2.

Table 4. Nine real-world datasets for clustering

Datasets Instances Features Classes
Iris 150 5 3
BreastCancer 699 10 2
Seeds 210 8 3
Zoo 101 17 7
MovementLibras 360 90 15
Glass 214 9 6
Pima 768 9 2
Leaves1 96 64 6
Leaves2 96 64 6

Besides, to validate the effectiveness of our new framework CED-FS, we conduct experiments on
nine high-dimensional real-world datasets for concept evolution detection over feature streams,
as shown in Table 5 3. Specifically, The LUNG2 dataset comprises 203 samples categorized into
five groups: adenocarcinoma, squamous cell lung cancer, lung carcinoid, small cell lung cancer,
and normal lung. Specifically, there are 139 samples of adenocarcinoma, 21 of squamous cell lung
cancer, 20 of lung carcinoid, 6 of small cell lung cancer, and 17 of normal lung. Each sample in
this dataset consists of 3312 features. The GLIOMA dataset comprises four categories: cancerous
glioblastoma (CG), non-cancerous glioblastoma (NG), cancerous oligodendroglioma (CO), and
non-cancerous oligodendroglioma (NO). It consists of 50 samples: 14 CG, 14 NG, 7 CO, and 15
NO samples. Each sample is represented as a one-dimensional vector of length 4434. The Gisette
dataset comprises 1000 instances, each characterized by a vast array of 5000 features. These features
represent various attributes or measurements associated with each instance. Such features could
include pixel intensities in image data, gene expression levels in biological data, or numerical values
representing different aspects of a phenomenon in scientific datasets. Each instance in the dataset
is a data point that contains values for all 5000 features, forming a high-dimensional representation
of the underlying data. The Mll dataset comprises 57 instances with 5848 features each. This dataset
is characterized by its comprehensive array of features, covering a diverse range of variables and
attributes. Each instance within the dataset is associated with many descriptive characteristics,
providing rich and detailed information for analysis and modeling purposes. The prostate dataset
comprises 102 instances and 5966 features, each representing a patient diagnosed with prostate
cancer, described by diverse demographic attributes (e.g., age, race), medical history (treatment

2 https://archive.ics.uci.edu/datasets.
3 http://www.cs.binghamton.edu/ lyu/KDD08/data/.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 21

history, familial cancer background), and diagnostic outcomes (e.g., PSA levels, tumor size). The
DLBCL dataset comprises 77 samples categorized into two classes: diffuse large B-cell lymphomas
(DLBCL) and follicular lymphoma (FL), with 58 and 19 instances, respectively. Each sample is
characterized by 6285 features. The CAR data set comprises 174 samples distributed across eleven
distinct cancer types: prostate, bladder/ureter, breast, colorectal, gastroesophagus, kidney, liver,
ovary, pancreas, lung adenocarcinomas, and lung squamous cell carcinoma. The sample counts for
each class are as follows: 26 for prostate, 8 for bladder/ureter, 26 for breast, 23 for colorectal, 12 for
gastroesophagus, 11 for kidney, 7 for liver, 27 for ovary, 6 for pancreas, 14 for lung adenocarcinomas,
and 14 for lung squamous cell carcinoma. ARCENE is obtained by merging three mass spectrometry
datasets to obtain sufficient training and testing data for benchmarking. Raw features indicate the
abundance of proteins with a given mass value in human serum. Based on these characteristics,
cancer patients (56 samples) had to be separated from healthy patients (44 samples).

Table 5. Nine high-dimensional real-world datasets for concept evolution detection

Datasets Instances Features Clusters
Lung2 203 3312 5
Glioma 50 4434 4
Gisette 1000 5000 2
Mll 57 5848 3
Prostate 102 5966 2
Dlbcl 77 6285 2
Car 174 9182 11
Arcene 100 10000 2
Real-sim 72309 20958 2

5.1.2 Evaluation Metrics. ARI (Adjusted Rand Index), F-score, and ACC (Accuracy) are three
common metrics to evaluate the performance of competing clustering algorithms.
ARI (Adjusted Rand Index): ARI is a metric used to measure the effectiveness of clustering

algorithms, taking into account the consistency between the actual class labels and the clustered
results. It has a range of [-1, 1]. The formula for ARI is as follows:

𝐴𝑅𝐼 =

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2
)
− [∑𝑖

(
𝑎𝑖
2
) ∑

𝑗

(𝑏 𝑗

2
)
]/
(
𝑁
2
)

1
2 [
∑

𝑖

(
𝑎𝑖
2
)
+∑

𝑗

(𝑏 𝑗

2
)
] − [∑𝑖

(
𝑎𝑖
2
) ∑

𝑗

(𝑏 𝑗

2
)
]/
(
𝑁
2
) , (18)

where (𝑛𝑖 𝑗) represents the intersection size of samples between actual class (i) and cluster (j), (𝑎𝑖)
and (𝑏 𝑗) represent the number of samples in actual class (i) and cluster (j) respectively, and (𝑁) is
the total number of samples.

Accuracy is the simplest evaluation metric in classification, indicating the proportion of correctly
classified samples. The formula is:

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 , (19)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 denote the number of true positive, true negative, false positive and
false negative decisions, respectively.
F-score is the harmonic mean of precision and recall, used to comprehensively evaluate the

accuracy of a classification algorithm. We apply 𝐹1 to evaluate the performance of competing
algorithms as follows:

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 , (20)

, Vol. 1, No. 1, Article . Publication date: July 2020.

22 Peng Zhou et al.

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁).
Before starting the experiment, we normalize the data using a min-max normalization to make

all data linearly map into [0, 1].

5.1.3 Competing Clustering Algorithms. We compare our new clustering algorithm KDPC-RkNN
with six clustering methods, including DBSCAN [9], K-means++ [1], K-medoids [37], DPC-KNN
[56], DPC-DLP [49], and CDC [38]. A brief introduction to these competing algorithms can be seen
in Section 2.1.

The parameter 𝑘 for algorithms K-means++ and K-medoids is set to the actual number of classes
for each dataset in Table 4. For DBSCAN, the parameter values of 𝑒𝑝𝑠 and𝑚𝑖𝑛𝑃𝑡𝑠 with the best
performance are (0.13, 9), (0.48, 15), (0.34, 30), (0.5, 1), (0.5, 40), (0.4, 20), (0.2, 1), (0.5, 1), (0.85, 7)
for each data set in Table 4 respectively. For DPC-KNN, the optimal values of the parameter
𝑝 that control the nearest neighbors are 0.11, 0.2, 0.05, 0.7, 0.05, 0.02, 0.02, 0.05, and 0.05 for
each data set. Similar to DPC-KNN, the parameter 𝑝 with the best performance in DPC-DLP
for each dataset are 0.11, 0.4, 0.01, 0.03, 0.04, 0.01, 0.08, 0.36, and 0.36, respectively. CDC has
two parameters, 𝑘 and 𝑟𝑎𝑡𝑖𝑜 . The optimal values of these two parameters for each data set are
(6, 0.90), (8, 0.95), (7, 0.85), (10, 0.85), (15, 0.90), (8, 0.80), (9, 0.70), (8, 0.90), (8, 0.90), respectively. Be-
sides, for our new proposed algorithm KDPC-RkNN, the parameter 𝑝 exhibits the best performance
for each data set are 0.05, 0.10, 0.02, 0.05, 0.05, 0.05, 0.02, 0.05, and 0.05.

For each dataset in Table 4, we run all these competing algorithms ten times and report the mean
value as the final results.

5.1.4 Statistical Tests. To verify whether the clustering performance of KDPC-RkNN and its
competitors on different metrics is significantly different, we performed the Friedman test at
95% significance level under the null hypothesis [5]. If the null hypothesis is rejected, there is
a significant difference in the performance of KDPC-RkNN and its competitors. When the null
hypothesis of the Friedman test was rejected, we proceeded to the Nemenyi test as a post-hoc test
[5].

All experiments were run on a computer withWindows 10, AMD Ryzen 7 3700X 8-Core Processor
3.6 GHz, and 16 GB of RAM running Matlab R2021b.

5.2 Performance of KDPC-RkNN

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(a)

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

(b)

0 5 10 15

14

16

18

20

22

24

26

28

(c)

5 10 15 20 25 30 35 40 45

4

6

8

10

12

14

16

18

20

22

24

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

Fig. 7. Five original synthetic datasets.

5.2.1 The clustering results on synthetic datasets. Since the dimensions of these five synthetic
datasets are relatively low, the value of the target dimension 𝑑 in KPCA is set to the same dimension
as the original dataset. Besides, there are two parameters for KDPC-RkNN: kernel function parameter
𝛿 , the ratio of the nearest neighbors 𝑝 (𝑘 = 𝑝 × 𝑁).

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 23

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 5 10 15

14

16

18

20

22

24

26

28

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

Fig. 8. The clustering results of KDPC-RkNN on five synthetic datasets.

For dataset (a), with parameter 𝑝 chosen from interval [0.1%, 5%], and parameter 𝜎 is taken from
interval [2, 20] for Gaussian kernel, exponential kernel or Laplace kernel, all yielding the results in
Fig. 8(a). Therefore, our improved algorithm is robust for 𝜎 and 𝑝 on the dataset (a).
For datasets (b) and (c), we obtain the results as shown in Fig. 8(b) and Fig. 8(c), respectively,

which indicate the effectiveness of our new algorithm for such clusters with different sizes and
shapes. We used the Laplace kernel on dataset (b), and the best experimental result is achieved
when the parameter 𝑝 is taken as 0.5% and 𝜎 taken from interval [2, 20]. On dataset (c), by using
the Gaussian kernel, good results are obtained when the parameter 𝑝 is taken around 20% and 𝜎
is taken as interval [12, 20]. In addition, the experimental effect is also valid by using the Laplace
kernel with the parameter 𝑝 is taken around 10% or 20% and 𝜎 is taken as interval [6, 18].

Through extensive testing on datasets (d) and (e), we can get perfect results as shown in Fig. 8(d)
and Fig. 8(e). KDPC-RkNN can take any values for the parameter 𝑝 from the interval (0.1%, 1)
which indicates the insensitive parameter 𝑝 on these two datasets. In other words, our new method
of computing local densities with reverse k nearest neighbors is very effective for dealing with
distributions like datasets (d) and (e).
In sum, these experiments on synthetic datasets indicate that our new algorithm can be very

effective for clusters with different distributions, shapes, and densities.

5.2.2 The clustering results on real-world datasets. To validate the effectiveness of our new clustering
algorithm in real-world applications, we compare KDPC-RkNN with six state-of-the-art clustering
methods on nine real-world datasets. Tables 6 to 8 present the clustering performance of ARI,
FScore, and ACC, respectively. The p-values of the Friedman test for ARI, FSCore, and ACC are
4.4327e-05, 3.4520e-06, and 7.8811e-04, respectively. Therefore, there is a significant difference
among these competing algorithms on the clustering performance. According to the Nemenyi test,
the value of CD is 3.003. Fig.9 indicates the statistical test of these competing algorithms with ARI,
FScore, and ACC.

From Tables 6 to 8 and Fig. 9, we can indicate that:

• KDPC-RkNN vs. DBSCAN: According to the statistical test graph, KDPC-RkNN performs
significantly better than DBSCAN in cases of FScore and ACC. In the ARI index, KDPC-
RkNN also gets higher average values and lower average ranks than DBSCAN. DBSCAN
may struggle with datasets exhibiting uneven density, as it might not adapt well to regions
with varying density levels. Sensitivity to noise and border points poses another challenge,
potentially leading to misclassification at the borders of different-density regions. The algo-
rithm’s reliance on density reachability limits its effectiveness in identifying clusters with
non-convex shapes.

, Vol. 1, No. 1, Article . Publication date: July 2020.

24 Peng Zhou et al.

Table 6. Clustering performance with ARI

Datasets DBSCAN K-means++ K-medoids DPC-KNN DPC-DLP CDC KDPC-RkNN
Iris 0.6812 0.6788 0.7565 0.8015 0.886 0.9038 0.9037
BreastCancer 0.8662 0.8391 0.8284 0.7395 0.8557 0.8718 0.872
Seeds 0.5843 0.6934 0.7064 0.7289 0.7431 0.7440 0.7754
Zoo 0.8229 0.748 0.666 0.8058 0.7466 0.9501 0.9249
MovementLibras 0.331 0.3350 0.3363 0.3450 0.3289 0.4251 0.4171
Glass 0.8662 0.8391 0.8284 0.7395 0.8557 0.8698 0.8716
Pima 0.1533 0.0976 0.0957 0.1043 0.1429 0.1514 0.1469
Leaves1 0.9748 0.7580 0.8053 0.7625 0.8135 0.8059 0.9745
Leaves2 0.7788 0.8646 0.8646 0.9286 0.7307 0.8163 1.0
AVG. 0.6621 0.6504 0.6542 0.6617 0.6781 0.7265 0.7584
AVG. RANKS 4.111 5.500 5.389 4.667 4.333 2.222 1.778

Table 7. Clustering performance with FScore

Datasets DBSCAN K-means++ K-medoids DPC-KNN DPC-DLP CDC KDPC-RkNN
Iris 0.7728 0.7893 0.837 0.8668 0.9236 0.9355 0.9354
BreastCancer 0.8662 0.8391 0.8284 0.7395 0.8557 0.8718 0.877
Seeds 0.7263 0.795 0.8038 0.8094 0.8283 0.8093 0.818
Zoo 0.8594 0.8017 0.728 0.8484 0.8127 0.9618 0.943
MovementLibras 0.2698 0.4329 0.4333 0.4559 0.4466 0.522 0.5089
Glass 0.8229 0.7480 0.6660 0.8058 0.7466 0.9148 0.9249
Pima 0.5679 0.6013 0.6025 0.6884 0.6090 0.5563 0.6734
Leaves1 0.3440 0.4654 0.4605 0.5899 0.3471 0.5751 0.5940
Leaves2 0.2181 0.4329 0.4333 0.4559 0.4466 0.4768 0.5089
AVG. 0.6053 0.6562 0.6436 0.6956 0.6685 0.7359 0.7510
AVG. RANKS 5.556 5.444 5.444 3.444 3.889 2.556 1.667

Table 8. Clustering performance with ACC

Datasets DBSCAN K-means++ K-medoids DPC-KNN DPC-DLP CDC KDPC-RkNN
Iris 0.8000 0.8485 0.9067 0.9187 0.9600 0.9667 0.9667
BreastCancer 0.8662 0.8391 0.8284 0.7395 0.8557 0.8718 0.8716
Seeds 0.8381 0.8857 0.8905 0.8905 0.9048 0.8905 0.9190
Zoo 0.8416 0.7228 0.7228 0.8020 0.7921 0.9208 0.8614
MovementLibras 0.4514 0.5298 0.5298 0.4881 0.5238 0.4940 0.5417
Glass 0.8662 0.8391 0.8284 0.7395 0.8557 0.8718 0.8770
Pima 0.5130 0.6665 0.6654 0.6497 0.6940 0.6016 0.6875
Leaves1 0.9792 0.8125 0.8958 0.7917 0.8587 0.8854 0.9896
Leaves2 0.8021 0.9375 0.9375 0.9688 0.8333 0.8333 1.0000
AVG. 0.7731 0.7868 0.8006 0.7765 0.8087 0.8151 0.8572
AVG. RANKS 5.111 4.833 4.500 5.111 3.722 3.333 1.389

• KDPC-RkNN vs. K-means++: Based on the Nmenyi test, KDPC-RkNN performs significantly
better than K-means++ in cases of all these three metrics. K-means++ assumes spherical and
equally sized clusters, akin to the standard K-means, making it less suitable for datasets with
clusters of non-spherical shapes or varying sizes. Another consideration is the dependence
on the predefined number of clusters, requiring users to specify this parameter beforehand.
This can be challenging when the actual number of clusters is unknown or varies in the
dataset.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 25

(ARI) (FScore)

(ACC)

Fig. 9. The statistical test graph of KDPC-RkNN vs. competing clustering algorithms.

• KDPC-RkNN vs. K-medoids: According to the statistical test, KDPC-RkNN performs signifi-
cantly better than K-medoids in cases of ARI and Fscore. In the case of ACC, KDPC-RkNN
gets higher accuracy than K-medoids on all nine datasets. The K-medoids algorithm’s perfor-
mance is contingent on the initial selection of medoids, making it dependent on the choice
of starting points, and finding an optimal set of medoids can be computationally intensive.
Besides, as the number of data points increases, the computational complexity of K-medoids
rises, making it less scalable for large datasets.

• KDPC-RkNN vs. DPC-KNN: Based on the Nmenyi test, KDPC-RkNN performs significantly
better than DPC-KNN in ACC. In the ARI metric, KDPC-RkNN outperforms DPC-KNN on
all nine datasets. Meanwhile, in the Fscore metric, KDPC-RkNN is better than DPC-KNN on
eight of nine datasets. Like our new method, DPC-KNN is also based on the DPC algorithm.
However, the DPC-KNN algorithm’s performance is sensitive to parameter choices, such
as thresholds for determining density peaks and k-nearest neighbors, requiring careful
consideration or domain knowledge for optimal selection. Additionally, the effectiveness of
DPC-KNN is contingent on the accurate identification of initial density peaks, and different
initial selections may lead to varying clustering outcomes.

• KDPC-RkNN vs. DPC-DLP: According to the statistical test, there is no significant difference
between KDPC-RkNN and DPC-DLP in these three metrics. On most datasets, KDPC-RkNN
has a higher performance than DPC-DLP. DPC-DLP is also based on the DPC algorithm. The
effectiveness of DPC-DLP heavily relies on accurately identifying initial density peaks, and
different initial selections can yield diverse clustering outcomes, emphasizing the critical
nature of this step. DPC-DLP might face difficulties when handling clusters with non-convex
shapes, potentially lacking flexibility for clusters with intricate shapes.

• KDPC-RkNN vs. CDC: There is no statistically significant difference in clustering performance
between KDPC-RkNN and CDC. On the average values and ranks, KDPC-RkNN performs

, Vol. 1, No. 1, Article . Publication date: July 2020.

26 Peng Zhou et al.

slightly better than CDC. CDC uses an objective function that includes terms for maximizing
diversity and maximizing connectivity to find diverse and connected clusters. Compared
with KDPC-RkNN, CDC may not be suitable for high-dimensional data sets because of the
exponential increase in time complexity.

In sum, KDPC-RkNN performs significantly better than classical clustering algorithms, such
as DBSCAN, K-means++, and K-medoids. Meanwhile, KDPC-RkNN performs better than some
DPC-based methods on most datasets, such as DPC-KNN and DPC-DLP. The effectiveness of our
new method in clusters with different distributions, shapes, and densities was thoroughly validated
by these experimental comparisons on real-world datasets.

5.3 Performance of CED-FS
Since the feature stream has a potentially infinite volume, only a fraction of the entire stream can
be processed. Therefore, we use sliding windows to solve the memory constraint problem and
detect concept evolution between two adjacent feature windows. The effectiveness of the clustering
algorithm KDPC-RkNN can be seen in the above experiments. After obtaining the clusters of two
adjacent feature windows, we will illustrate the concept evolution on the nine high-dimensional
datasets.
We apply CED-FS on these nine datasets and obtain the results as shown in Table 9, where

𝐸 (𝑚,𝑛) , 𝐷 (𝑚,𝑛) , and 𝐹 (𝑚,𝑛) indicate the three different types of concept evolution between feature
window𝑚 and 𝑛. In general, the change in the number of clusters indicates the concept evolution
between two adjacent feature windows. For datasets Gisette and Arcene, the number of clusters
does not change among different feature windows, and there is no concept evolution too. However,
the unchanged number of clusters does not necessarily mean that there is no concept evolution.
For example, on dataset Mll, the number of clusters remains 3, but there is concept drift between
feature windows (1, 2), (2, 3), (5, 6).

Table 9. Concept evolution detection results on nine datasets, where “#Windows” denotes the number of
windows and “#Clusters” denotes the number of clusters for each feature window.

Data sets #Windows #Clusters Concept emerging Concept drift Concept forgetting
Lung2 3 ⟨4, 6, 5⟩ 𝐸 (1,2) 𝐷 (1,2) ,𝐷 (2,3) 𝐹 (2,3)
Glioma 4 ⟨5, 5, 4, 4⟩ 𝐸 (1,2) ,𝐸 (3,4) 𝐷 (1,2) ,𝐷 (2,3) ,𝐷 (3,4) 𝐹 (1,2) ,𝐹 (3,4)
Gisette 5 ⟨3, 3, 3, 3, 3⟩ - - -
Mll 6 ⟨3, 3, 3, 3, 3, 3⟩ - 𝐷 (1,2) ,𝐷 (2,3) ,𝐷 (5,6) -
Prostate 6 ⟨6, 3, 3, 4, 4, 5⟩ 𝐸 (3,4) ,𝐸 (5,6) 𝐷 (1,2) ,𝐷 (2,3) 𝐹 (1,2)

𝐷 (3,4) ,𝐷 (4,5) ,𝐷 (5,6)
Dlbcl 6 ⟨3, 3, 2, 2, 2, 4⟩ 𝐸 (3,4) ,𝐸 (5,6) 𝐷 (1,2) ,𝐷 (2,3) 𝐹 (2,3)

𝐷 (3,4) ,𝐷 (4,5) ,𝐷 (5,6)
Car 9 ⟨11,12,12, 𝐸 (1,2) ,𝐸 (2,3) 𝐷 (1,2) ,𝐷 (2,3) 𝐹 (1,2) ,𝐹 (2,3)

10,8,12, 𝐸 (3,4) ,𝐸 (4,5)𝐸 (5,6) 𝐷 (3,4) ,𝐷 (4,5) ,𝐷 (5,6) 𝐹 (3,4) ,𝐹 (4,5) ,𝐹 (5,6)
8,9,14 ⟩ 𝐸 (6,7) ,𝐸 (7,8) ,𝐸 (8,9) 𝐷 (6,7) ,𝐷 (7,8) ,𝐷 (8,9) 𝐹 (6,7) ,𝐹 (7,8) ,𝐹 (8,9)

Arcene 10 ⟨2,2,2,2,2, - - -
2,2,2,2,2⟩

Real-sim 21 ⟨2,3,2,2, 𝐸 (1,2) ,𝐸 (2,3) 𝐷 (1,2) ,𝐷 (4,5) ,𝐷 (5,6) 𝐹 (1,2) ,𝐹 (2,3) ,𝐹 (4,5)
4,2,2,4, 𝐸 (4,5) 𝐸 (5,6) ,𝐸 (6,7) 𝐷 (6,7) ,𝐷 (7,8) ,𝐷 (12,13) 𝐹 (5,6)𝐹 (6,7) ,𝐹 (7,8)
3,2,2,5, 𝐸 (7,8) ,𝐸 (11,12) ,𝐸 (12,13) 𝐷 (13,14) ,𝐷 (14,15) ,𝐷 (15,16) 𝐹 (8,9) ,𝐹 (9,10)𝐹 (12,13)
3,2,2,3, 𝐸 (14,15) ,𝐸 (15,16) ,𝐸 (16,17) 𝐷 (16,17) ,𝐷 (17,18) ,𝐷 (18,19) 𝐹 (13,14) ,𝐹 (14,15) ,𝐹 (15,16)
5,2,2,3,3⟩ 𝐸 (17,18) ,𝐸 (19,20) ,𝐸 (20,21) 𝐹 (16,17) ,𝐹 (17,18) ,𝐹 (20,21)

Fig. 10 presents the bipartite graph of concept evolution detection on dataset Lung2. It can
be easily found that there exists concept emerging (𝐸 (1,2) = {⟨∅, 𝑐1⟩, ⟨∅, 𝑐3⟩}) and concept drift
(𝐷 (1,2) = {⟨𝑐1, 𝑐2⟩, ⟨𝑐2, 𝑐4⟩, ⟨𝑐3, 𝑐5⟩, ⟨𝑐4, 𝑐6⟩}) between feature windows𝑊1 and𝑊2. Meanwhile, for
the two adjacent feature windows 𝑊2 and 𝑊3, the concept evolution includes: concept drift

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 27

𝐷 (2,3) = {⟨𝑐2, 𝑐2⟩, ⟨𝑐3, 𝑐1⟩, ⟨𝑐4, 𝑐3⟩, ⟨𝑐5, 𝑐4⟩} and concept forgetting 𝐹 (2,3) = {⟨𝑐1, ∅⟩}. Besides, there is
no concept evolution between the concept 𝑐6 in𝑊2 and concept 𝑐5 in𝑊3.

Fig. 10. The bipartite graph of the concept evolution detection on dataset Lung2.

Similarly, we can easily obtain the details of concept evolution on dataset Glioma from Fig. 11.
Specifically, we can get concept emerging relations 𝐸 (1,2) = {⟨∅, 𝑐2⟩}, 𝐸 (3,4) = {⟨∅, 𝑐1⟩}, concept drift
relations𝐷 (1,2) = {⟨𝑐1, 𝑐1⟩, ⟨𝑐3, 𝑐3⟩, ⟨𝑐4, 𝑐4⟩, ⟨𝑐5, 𝑐5⟩},𝐷 (2,3) = {⟨𝑐1, 𝑐1⟩, ⟨𝑐2, 𝑐1⟩, ⟨𝑐3, 𝑐2⟩, ⟨𝑐4, 𝑐3⟩, ⟨𝑐5, 𝑐4⟩},
𝐷 (3,4) = {⟨𝑐1, 𝑐2⟩, ⟨𝑐2, 𝑐4⟩}, and concept forgetting relation 𝐹 (3,4) = {⟨𝑐3, ∅⟩}.

Fig. 11. The bipartite graph of the concept evolution detection on dataset Glioma.

In terms of our proposed CED-FS framework, it can intuitively and effectively analyze and mine
the concept evolution over feature streams. As the first work in this field, it will provide meaningful
guidance for conceptual analysis and evolutionary studies on streaming data.

5.4 Parameter Analysis of CED-FS
In general, there are four parameters for CED-FS:

• The length of sliding window 𝑤 : in our experiments, we set 𝑤 = 1, 000, which we have
already analyzed in Section 4.1;

• The target dimension size 𝑑 in KPCA: due to the kernel matrix 𝐾 is 𝑁 ×𝑁 , the upper limit of
the principal component dimension (𝑑) is 𝑁 , we set 𝑑 = 𝑁 /3 as an experience value, where
𝑁 is the number of instances for each dataset;

, Vol. 1, No. 1, Article . Publication date: July 2020.

28 Peng Zhou et al.

• Kernel function parameter 𝜎 in KDPC-RkNN: in terms of the experiment results of Section
5.2, we choose the Gaussian kernel in this and next experimental subsection. Meanwhile, to
analyze the optimal values for the nine high-dimensional datasets in Table 5, We choose the
value of 𝜎 from 1 to 12 with 1 interval;

• The ratio of the nearest neighbors 𝑝 in KDPC-RkNN: we set the number of nearest neighbors
𝑘 = 𝑝 × 𝑁 . To test the effect of different values of 𝑝 , we choose 𝑝 as {0.001, 0.002,
0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} in our experiments.

0

0.2

0.451
0.401

0.4

12
0.351 11

r

0.6

100.301
9

p

0.251

0.8

8
70.201

1

60.151 5
0.101 4

30.051
2

0.001 1

(d) Lung2

0

0.2

0.451
0.401

0.4

120.351 11

r

0.6

100.301
9

p

0.8

0.251 8
0.201 7

1

60.151 5
0.101 4

30.051 20.001 1

(a) Glioma

1
2

3
4

5
6

7
8

9
10

11
12

0.001
0.051

0.101
0.151

0.201
0.251

0.301
0.351

0.401
0.451

p

0

0.2

0.4

0.6

0.8

1

r

(b) Gisette

0

0.2

0.451
0.401

0.4

120.351 11

r

0.6

100.301
9

p

0.8

0.251 8
0.201 7

1

60.151 5
0.101 4

30.051 20.001 1

(c) Mll

0

0.2

0.451
0.401

0.4

120.351 11

r

0.6

100.301
9

p

0.8

0.251 8
0.201 7

1

60.151 5
0.101 4

30.051 20.001 1

(e) Car

0

0.2

0.451
0.401

0.4

120.351 11

r

0.6

100.301
9

p

0.8

0.251 8
0.201 7

1

60.151 5
0.101 4

30.051 20.001 1

(f) Real-sim

Fig. 12. Illustration of the mean value of 𝑅 for all feature windows varying with 𝜎 and 𝑝 .

Due to space constraints, Fig. 12 illustrates the clustering performance of KDPC-RkNN on six
datasets (Lung2, Glioma, Gisette, Mll, Car, and Real-sim) varying with different values of 𝜎 and 𝑝 ,
where 𝑟 indicates the mean value of 𝑅 for all feature windows (𝑤 = 1, 000 for each feature window).
From Fig. 12, we can observe that different datasets have different sensitivities to the parameters.
For example, on datasets Glioma, Mll and Lung2, there are more flat areas in the figure than in
datasets Car and Real-sim. In general, for parameter 𝑝 , a smaller value indicates higher performance.
This is because a large value of 𝑝 , which means considering more nearest neighbors, may decrease
discrimination. Besides, for parameter 𝜎 , different datasets prefer different values. Among these
six datasets, it should be noted that on dataset Gisette, the changing of parameters 𝑝 and 𝜎 do

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 29

Table 10. Optimal values of parameter 𝜎 and 𝑝 on these nine datasets, where ’-’ means that the change of
these values does not affect the results.

Datasets 𝜎 𝑝

Lung2 6 0.05
Glioma 4 {0.01, 0.02}
Gisette − −
Mll {9, 10} {0.1, 0.2}

Prostate 7 0.1
Dlbcl 8 0.1
Car 5 0.005

Arcene − 0.2
Real-sim 1 0.05

not affect the performance. In other words, for different feature windows, the data distribution is
almost not changed. From Table 9, we can also find that there is no concept evolution on dataset
Gisette during different feature windows. Table 10 presents the optimal values of parameters 𝜎 and
𝑝 on these nine datasets, which we will use in the subsequent experiments.

6 CONCLUSION
This paper studies the issue of concept evolution detection over feature streams for the first time and
proposes a new framework, CED-FS, to handle it. CED-FS consists of a sliding window, an improved
DPC-based clustering algorithm, and a weight bipartite graph-based concept evolution detection
method. We first give the formal definition of concept evolution detection over feature streams
and present a case study on real-world datasets to illustrate the existence of concept evolution. By
analyzing the drawbacks of the DPC algorithm, we propose the new clustering algorithm (KDPC-
RkNN) based on kernel principal component analysis and reverse k-nearest neighbors. Then, we
construct a weight bipartite graph with the concept sets of two adjacent feature windows and
detect different types of concept evolution based on the corresponding characteristics. Extensive
experiments on synthetic and real-world datasets demonstrate the algorithm’s effectiveness. Besides,
we applied CED-FS on several high-dimensional datasets and experimentally indicated its ability to
detect concept emerging, concept drift, and concept forgetting over feature streams.

Since this is the first work on concept evolution detection over feature streams, there are many
issues for further study and improvement. First, some specialized benchmark high-dimension
datasets should be constructed for the concept evolution detection task in the future. Secondly, new
metrics should be designed to measure the performance of concept evolution detection over feature
streams. Thirdly, in this paper, we use a fixed-size sliding window in our framework. Variable-size
adaptive sliding windows will be more adaptable to the needs of real-world applications. Fourthly,
more efficient clustering algorithms that do not require the number of clusters in advance should
be investigated. Finally, we firmly believe that the near future will involve new concept evolution
detection methods to gain higher recognition and apply this detection framework to more practical
applications.

7 ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science Foundation of China under grants
(62376001, 62376002, 62120106008), the Science Foundation of Anhui Province of China under grant
2308085MF215.

, Vol. 1, No. 1, Article . Publication date: July 2020.

30 Peng Zhou et al.

REFERENCES
[1] David Arthur and Sergei Vassilvitskii. 2007. K-means++ the advantages of careful seeding. In Proceedings of the

eighteenth annual ACM-SIAM symposium on Discrete algorithms. 1027–1035.
[2] Maroua Bahri, Albert Bifet, João Gama, HeitorMurilo Gomes, and SilviuManiu. 2021. Data stream analysis: Foundations,

major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 11, 3 (2021), e1405.
[3] Ewan Birney. 2012. Lessons for big-data projects. Nature 489, 7414 (2012), 49–51.
[4] Jianguo Chen, Kenli Li, Huigui Rong, Kashif Bilal, Nan Yang, and Keqin Li. 2018. A disease diagnosis and treatment

recommendation system based on big data mining and cloud computing. Information Sciences 435 (2018), 124–149.
[5] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning

Research 7 (2006), 1–30.
[6] Konstantinos I Diamantaras and Sun Yuan Kung. 1996. Principal component neural networks: theory and applications.

John Wiley & Sons, Inc.
[7] Jiajun Ding, Xiongxiong He, Junqing Yuan, and Bo Jiang. 2018. Automatic clustering based on density peak detection

using generalized extreme value distribution. Soft Computing 22 (2018), 2777–2796.
[8] Mingjing Du, Shifei Ding, and Hongjie Jia. 2016. Study on density peaks clustering based on k-nearest neighbors and

principal component analysis. Knowledge-Based Systems 99 (2016), 135–145.
[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In kdd, Vol. 96. 226–231.
[10] Qihang Fang, Gang Xiong, MengChu Zhou, Tariku Sinshaw Tamir, Chao-Bo Yan, Huaiyu Wu, Zhen Shen, and Fei-Yue

Wang. 2022. Process monitoring, diagnosis and control of additive manufacturing. IEEE Transactions on Automation
Science and Engineering 21, 1 (2022), 1041–1067.

[11] Xiaoli Zhang Fern and Carla E Brodley. 2004. Solving cluster ensemble problems by bipartite graph partitioning. In
Proceedings of the twenty-first international conference on Machine learning. 36.

[12] Gajendra Singh Gurjar and Sharda Chhabria. 2015. A review on concept evolution technique on data stream. In 2015
International Conference on Pervasive Computing (ICPC). IEEE, 1–3.

[13] Ben Halstead, Yun Sing Koh, Patricia Riddle, Mykola Pechenizkiy, and Albert Bifet. 2023. Combining diverse meta-
features to accurately identify recurring concept drift in data streams. ACM Transactions on Knowledge Discovery from
Data 17, 8 (2023), 1–36.

[14] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani Thuraisingham, and Charu Aggarwal. 2016. Efficient handling
of concept drift and concept evolution over stream data. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE). IEEE, 481–492.

[15] Morteza Zi Hayat and Mahmoud Reza Hashemi. 2010. A DCT based approach for detecting novelty and concept drift
in data streams. In 2010 International Conference of Soft Computing and Pattern Recognition. IEEE, 373–378.

[16] Yi He, Xu Yuan, Sheng Chen, and Xindong Wu. 2021. Online Learning in Variable Feature Spaces under Incomplete
Supervision. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. 4106–4114.

[17] Bo Jian Hou, Lijun Zhang, and Zhi Hua Zhou. 2021. Learning with Feature Evolvable Streams. IEEE Transactions on
Knowledge and Data Engineering 33, 6 (2021), 2602–2615.

[18] XueGang Hu, Peng Zhou, PeiPei Li, Jing Wang, and XinDong Wu. 2018. A Survey on Online Feature Selection with
Streaming Features. Frontiers of Computer Science 12, 3 (2018), 479–493.

[19] Jinlong Huang, Qingsheng Zhu, Lijun Yang, Dongdong Cheng, and Quanwang Wu. 2017. QCC: a novel clustering
algorithm based on Quasi-Cluster Centers. Machine Learning 106, 3 (2017), 337–357.

[20] Wen Jin, Anthony KH Tung, Jiawei Han, and Wei Wang. 2006. Ranking outliers using symmetric neighborhood
relationship. In Pacific-Asia conference on knowledge discovery and data mining. Springer, 577–593.

[21] Georg Krempl, Indre Žliobaite, Dariusz Brzeziński, Eyke Hüllermeier, Mark Last, Vincent Lemaire, Tino Noack, Ammar
Shaker, Sonja Sievi, Myra Spiliopoulou, and Jerzy Stefanowski. 2014. Open Challenges for Data StreamMining Research.
SIGKDD Explor. Newsl. 16, 1 (sep 2014), 1–10.

[22] Mark Last. 2002. Online classification of nonstationary data streams. Intelligent data analysis 6, 2 (2002), 129–147.
[23] Haiguang Li, Xindong Wu, Zhao Li, and Wei Ding. 2013. Group feature selection with streaming features. In 2013 IEEE

13th International Conference on Data Mining. IEEE, 1109–1114.
[24] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and Huan Liu. 2017. Feature

Selection: A Data Perspective. Acm Computing Surveys 50, 6 (2017), 1–45.
[25] Zejian Li and Yongchuan Tang. 2018. Comparative density peaks clustering. Expert Systems with Applications 95 (2018),

236–247.
[26] Zhenguo Li, Xiao-Ming Wu, and Shih-Fu Chang. 2012. Segmentation using superpixels: A bipartite graph partitioning

approach. In 2012 IEEE conference on computer vision and pattern recognition. IEEE, 789–796.
[27] Anjin Liu, Jie Lu, Yiliao Song, Junyu Xuan, and Guangquan Zhang. 2022. Concept drift detection delay index. IEEE

Transactions on Knowledge and Data Engineering 35, 5 (2022), 4585–4597.

, Vol. 1, No. 1, Article . Publication date: July 2020.

Concept Evolution Detecting over Feature Streams 31

[28] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2019. Learning under Concept Drift: A
Review. IEEE Transactions on Knowledge and Data Engineering 31, 12 (2019), 2346–2363.

[29] Ioannis A Maraziotis, Stavros Perantonis, Andrei Dragomir, and Dimitris Thanos. 2019. K-Nets: Clustering through
nearest neighbors networks. Pattern Recognition 88 (2019), 470–481.

[30] Mohammad Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M Thuraisingham. 2010. Classification and novel
class detection in concept-drifting data streams under time constraints. IEEE Transactions on Knowledge and Data
Engineering 23, 6 (2010), 859–874.

[31] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu Aggarwal, Jing Gao, Jiawei Han, and Bhavani Thuraisingham.
2010. Addressing concept-evolution in concept-drifting data streams. In Proceedings - IEEE International Conference on
Data Mining, ICDM. 929–934.

[32] Mohammad M Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thuraisingham. 2009. Integrating novel class
detection with classification for concept-drifting data streams. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 79–94.

[33] Ujjwal Maulik and Sanghamitra Bandyopadhyay. 2002. Performance evaluation of some clustering algorithms and
validity indices. IEEE Transactions on pattern analysis and machine intelligence 24, 12 (2002), 1650–1654.

[34] Saad Mohamad, Moamar Sayed-Mouchaweh, and Abdelhamid Bouchachia. 2017. Active learning for data streams
under concept drift and concept evolution. CEUR Workshop Proceedings 2069 (2017), 1–18.

[35] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. 2015. A survey on data stream clustering and classification.
Knowledge and information systems 45, 3 (2015), 535–569.

[36] Le T Nguyen, Ming Zeng, Patrick Tague, and Joy Zhang. 2015. Recognizing new activities with limited training data.
In Proceedings of the 2015 ACM International Symposium on Wearable Computers. 67–74.

[37] Hae-Sang Park and Chi-Hyuck Jun. 2009. A simple and fast algorithm for K-medoids clustering. Expert systems with
applications 36, 2 (2009), 3336–3341.

[38] Dehua Peng, Zhipeng Gui, Dehe Wang, Yuncheng Ma, Zichen Huang, Yu Zhou, and Huayi Wu. 2022. Clustering by
measuring local direction centrality for data with heterogeneous density and weak connectivity. Nature communications
13, 1 (2022), 5455.

[39] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. 2014. A review of novelty detection. Signal
processing 99 (2014), 215–249.

[40] Joseph Prusa, Taghi M Khoshgoftaar, and Naeem Seliya. 2015. The effect of dataset size on training tweet sentiment
classifiers. In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 96–102.

[41] Yikun Qin, Zhu Liang Yu, Chang-Dong Wang, Zhenghui Gu, and Yuanqing Li. 2018. A novel clustering method based
on hybrid k-nearest-neighbor graph. Pattern recognition 74 (2018), 1–14.

[42] Sergio Ramírez-Gallego, Bartosz Krawczyk, Salvador García, Michał Woźniak, and Francisco Herrera. 2017. A survey
on data preprocessing for data stream mining: Current status and future directions. Neurocomputing 239 (2017), 39–57.

[43] William M Rand. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
association 66, 336 (1971), 846–850.

[44] Kaspar Riesen and Horst Bunke. 2009. Approximate graph edit distance computation by means of bipartite graph
matching. Image and Vision computing 27, 7 (2009), 950–959.

[45] Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and find of density peaks. science 344, 6191 (2014),
1492–1496.

[46] Amanpreet Kaur Sandhu. 2021. Big data with cloud computing: Discussions and challenges. Big Data Mining and
Analytics 5, 1 (2021), 32–40.

[47] Jeffrey C Schlimmer and Richard H Granger. 1986. Incremental learning from noisy data. Machine learning 1, 3 (1986),
317–354.

[48] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. 1998. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation 10, 5 (1998), 1299–1319.

[49] Seyed Amjad Seyedi, Abdulrahman Lotfi, Parham Moradi, and Nooruldeen Nasih Qader. 2019. Dynamic graph-based
label propagation for density peaks clustering. Expert Systems with Applications 115 (2019), 314–328.

[50] Eduardo J Spinosa, André Ponce de Leon F. de Carvalho, and Joao Gama. 2007. Olindda: A cluster-based approach for
detecting novelty and concept drift in data streams. In Proceedings of the 2007 ACM symposium on Applied computing.
448–452.

[51] Jing Wang, Meng Wang, Peipei Li, Luoqi Liu, Zhongqiu Zhao, Xuegang Hu, and Xindong Wu. 2015. Online feature
selection with group structure analysis. IEEE Transactions on Knowledge and Data Engineering 27, 11 (2015), 3029–3041.

[52] Xindong Wu, Kui Yu, Wei Ding, Hao Wang, and Xingquan Zhu. 2012. Online feature selection with streaming features.
IEEE transactions on pattern analysis and machine intelligence 35, 5 (2012), 1178–1192.

[53] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. 2013. Data mining with big data. IEEE transactions on
knowledge and data engineering 26, 1 (2013), 97–107.

, Vol. 1, No. 1, Article . Publication date: July 2020.

32 Peng Zhou et al.

[54] Juanying Xie, Hongchao Gao, Weixin Xie, Xiaohui Liu, and Philip W Grant. 2016. Robust clustering by detecting
density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Information Sciences 354 (2016),
19–40.

[55] Shuliang Xu, Lin Feng, Shenglan Liu, and Hong Qiao. 2020. Self-adaption neighborhood density clustering method for
mixed data stream with concept drift. Engineering Applications of Artificial Intelligence 89 (2020), 103451.

[56] Liu Yaohui, Ma Zhengming, and Yu Fang. 2017. Adaptive density peak clustering based on K-nearest neighbors with
aggregating strategy. Knowledge-Based Systems 133 (2017), 208–220.

[57] Kui Yu, Wei Ding, Dan A Simovici, Hao Wang, Jian Pei, and Xindong Wu. 2015. Classification with streaming features:
An emerging-pattern mining approach. ACM Transactions on Knowledge Discovery from Data (TKDD) 9, 4 (2015), 1–31.

[58] Qixin Zhang, Zengde Deng, Zaiyi Chen, Haoyuan Hu, and Yu Yang. 2022. Stochastic Continuous Submodular
Maximization: Boosting via Non-oblivious Function. In Proceedings of the 39th International Conference on Machine
Learning, Vol. 162. PMLR, 26116–26134.

[59] Qixin Zhang, Zengde Deng, Xiangru Jian, Zaiyi Chen, Haoyuan Hu, and Yu Yang. 2023. Communication-Efficient De-
centralized Online Continuous DR-Submodular Maximization. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management (CIKM ’23). New York, NY, USA, 3330–3339.

[60] Peng Zhou, Xuegang Hu, Peipei Li, and Xindong Wu. 2019. OFS-density: A novel online streaming feature selection
method. Pattern Recognition 86 (2019), 48–61.

[61] Peng Zhou, Shu Zhao, Yuanting Yan, and Xindong Wu. 2022. Online scalable streaming feature selection via dynamic
decision. ACM Transactions on Knowledge Discovery from Data (TKDD) 16, 5 (2022), 1–20.

, Vol. 1, No. 1, Article . Publication date: July 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Clustering for Concept Detection
	2.2 Concept Detection over Instance Stream
	2.3 Online Feature Stream Learning

	3 Problem Definition
	3.1 Formal Definition of Concept Evolution
	3.2 Case Study of Concept Evolution

	4 The Proposed Framework
	4.1 Data Retrieval by a Sliding Window
	4.2 Data Modeling by an Improved Clustering Algorithm
	4.3 Concept Evolution Detection by a Weighted Bipartite Graph

	5 Experiments
	5.1 Experiment Setup
	5.2 Performance of KDPC-RkNN
	5.3 Performance of CED-FS
	5.4 Parameter Analysis of CED-FS

	6 Conclusion
	7 Acknowledgments
	References

